Canadian Fur Trade Archaeology: Alberta’s Forgotten Legacy

The once proud and famous Hudson’s Bay Comany Fort Edmonton V (c.1830 – 1915), one of the largest fur trade establishments in the Canadian Northwest, sits dwarfed by the New Alberta Legislature building, as Alberta moves onto a new era, c.1912. 1

When I took my first trowel strokes, as a field school student at the historic Hudson’s Bay Company Fort Victoria (c.1864 – 1898), Alberta in 1974, I knew immediately I could get to like this work. Nearly fifty years later that feeling remains.

Removing the sod layer at the Hudson’s Bay Company Fort Victoria in 1974. Beneath the sod, we found the archaeological remains of the fort trading store, which after over a hundred years, still contained the foundation logs and well-preserved cellar remains.

Canada has a long, colourful, and often tumultuous fur trade history. The fur trade, in beaver pelts, was the prime economic driver of early Canada for over three centuries. However, the trade was often viewed with either disdain or opportunity by Canada’s First Nations people who participated in it.

What the people of the Canadian fur trade did and how they lived is preserved in the thousands of documents left behind by Company officers, clerks, explorers, and first missionaries. It was occasionally captured in paintings by frontier artists such as Paul Kane.

A painting of the Hudson’s Bay Company Fort Edmonton V (c.1830 – 1915) by artist Paul Kane, 1849-56. 2

But fur trade history is also preserved in the remains of many fur trade forts constructed across Canada as it expanded westward in search of new fur-rich lands. Often those fur trade forts left behind a rich archaeological record.

Alberta is no exception. In fact, the then Athapuskow Country in today’s northern Alberta, was among the richest fur districts in North America. When American fur trader Peter Pond first discovered it in 1778, he acquired so many furs that he had to cache some because he couldn’t take them all back to Montreal.

Trader Colin Fraser, in his warehouse, examining his lot of furs worth an estimated $35,000 – a huge sum of money in the 19th century. As the Hudson’s Bay Company 1826 fur returns show, both the Athabasca and Saskatchewan Districts, mostly located in today’s Alberta, had among the highest numbers of beaver pelts in the entire Canadian Northwest. 3

I am often asked, how many fur trade establishments were there in Alberta? According to our Alberta inventories, that number is over 300. We are probably missing a few forts that were never recorded in the sometimes ‘sketchy’ historic documents. And as Alexander Ross’s description of Fort Assiniboine suggests, some of these places hardly deserved the name ‘fort’.

The majority of fur trade posts were located in central and northern Alberta, built by the various fur trade Companies operating from eastern Canada or England. The ‘Whiskey’ posts listed here are a later nineteenth-century addition to the trade, located mainly in southern Alberta and operated primarily by American pedlars.

Many of these forts have not been found. Often their locations were poorly documented. The physical evidence they left behind is difficult to see in the dense bush when traipsing through Alberta’s densely forested river valleys.

Graph showing the number of fur trade posts whose location is known and those that have not been found. Only approximately seven percent of these forts have been excavated.

In the dense bush of the Peace River floodplain, there are only a few hints suggesting a fur trade post once existed there – mounds representing collapsed building fireplaces and depressions representing cellars or some other type of pit. Occasionally faint depressions marking the ditches dug to place in the palisade pickets for the fort walls, still appear on the surface of the ground.

But even these features are often hard to see. Despite having found the Boyer River fort site thirty years earlier, it took over an hour to relocate a few depressions and mounds in the dense undergrowth of the Peace River floodplain.

Students from the University of Lethbridge searched through the dense bush for evidence of the 1788 North West Company’s Boyer’s Post in 2018. Only a vague description of the location of the post existed – it was built near the confluence of the Boyer and Peace Rivers.
With new technologies, we are now able to find archaeological sites hidden in the dense boreal forest more easily. LIDAR (Light Detection and Ranging) imagery strips the vegetation from the surface and then maps the surface contours with a high degree of accuracy. Above is an example of LIDAR imagery, an optical remote sensing technology that can measure the distance, or other properties of a target by illuminating the target with light often using pulses from a laser. Not only did LIDAR reveal the large cellar depressions at Fort Vermilion I (c.1798 – 1830) marked by the upper two circles, but a large depression of an unknown site marked by the lower circle.

The fur trade documentary record leaves many things to be desired. It is often a biased, one-sided description of the trade and the more important members operating in it. Company workers and Indigenous people have little or no voice in those documents.

Despite being an incomplete testimony of human history, the archaeological remains we find reflect not only the lives of a literate few but also those of the many Company servants and Indigenous peoples living at the posts who left no written record behind. Their lives are reflected in the dwellings they lived in, the possessions they made or bought, and the food they ate.

Fur trade society was stratified, primarily by one’s occupation, ethnicity, and gender. The fur trade archaeological and documentary records reveal that those individuals in the highest positions had access to the best resources. Officers’ quarters were bigger, and better constructed than those of the servants 4.

The schematic drawing of the buildings at the North West Company Fort George (c.1792 – 1800) is a case in point. This drawing was completed primarily from archaeological remains since no map of the fort existed. The men’s quarters on the left housed the Company workers and their families, sometimes holding up to 10 – 12 people in tiny, confined single rooms. These dwellings were dwarfed by Chief Trader, Angus Shaw’s two-storey Big House, where he and his family resided.

The layout of Fort George is based on archaeological evidence. There are only five references to fort construction in clerk, Duncan McGillivray’s 1794-95 journal, the only surviving document from this late 18th century Fortes des Prairie.

The personal possessions of the Fort population inform us about their gender, beliefs, and cultural affiliations. For example, early in the fur trade when metals were new to Indigenous people, old, leaky copper pots and larger pieces of silver were repurposed and made into jewelry.

Copper and silver tinkling cones and tags, likely made by the Indigenous wives of Company men, were highly prized objects often replacing or incorporated with traditional shell and bone adornment. They also remind us of the importance of women in the trade and everyday operation of the forts.

Artifacts from Fort Vermilion I (c.1798-1830) were repurposed from metal and made into ornaments to suit the needs of Indigenous people living at the fur trade posts: A. Copper Tinkling cones to adorn jingle dresses; B and C. Silver tags (to adorn dress as in illustration D) cut from a larger piece of trade silver; D. A leather Dene dress adorned with metal tags made from scrap metal 5

The inequality existing among fur trade ranks is also reflected in their diet. During the early years of the western fur trade, wild game made up most of the food fort personnel ate. Often our fur trade posts contain an abundant, rich array of faunal remains.

Those animal bones, along with the surviving documents, show the large quantities of meat eaten by fort personnel. Meat and fat were rationed differently, depending on employees’ rank and position at the fort. Officers and their families often had more and better cuts of meat and were given more of the highly prized fat.

That amount of meat, representing 500 animals (likely bison), consumed over approximately sixty-one days, averages out to about most of eight bison a day required to feed the 160 hungry mouths at Fort George.

Faunal remains from the North West Company Fort George, Alberta. This fort, while primarily there to acquire furs, was essentially a meat factory, processing tens of thousands of pounds of meat necessary to supply the fur trade brigades on the journeys from the east into the Canadian interior. The photograph on the left shows butchered bone remains thrown up against the south palisade of the fort. Bone debris fills an old building cellar in the photograph on the right.
CategoryFresh MeatDried MeatPounded MeatGrease
Officers Mess (2 persons)2250 lbs57 lbs57 lbs105 lbs
Officers Families (6 adults)42831596108
Engages (8 persons)775257657618
Engages Families (3 adults)26121481484
Meat rations at Fort Vermilion II, 1832-33. While the Engages and their families are getting less fresh, dried, and pounded meat than the officers, they received far less fat per individual than the Officers and their families. 6

Despite the Northwest’s seemingly endless supply of resources, the fur trade’s impact on game animal populations soon showed, often in ugly ways.

Alberta’s fur trade era, and that of the rest of Canada, has left a rich and varied historic footprint. It represents not only how an elite, literate portion of the population of the fur trade lived, but also how the rest of the many employees, representing a diverse number of ethnic groups, fared. While considered a darker side of Canadian colonialism, it nevertheless is part of Canadian history and cannot be ignored.

Footnotes:
  1. City of Edmonton Archives. EA-10-2517[]
  2. Courtesy Royal Ontario Museum, 912.1.38[]
  3. Provincial Archives of Alberta. B10018.[]
  4. Pyszczyk, Heinz. 1992. The Architecture of the Western Canadian Fur Trade: A Cultural-Historical Perspective. Society for the Study of Architecture in Canada, Bulletin 17(2):32-41[]
  5. D from Kate Duncan. 1989. Northern Athapaskan Beadwork. A Beadwork Tradition. Douglas and McIntyre, Vancouver.[]
  6. Source: HBCA B60/d/2a/fa.12[]

Her ‘Spirit Colours’. Colour Selection in Canadian Historic Glass Beads

“…colours are the mother tongue of the subconscious” (Karl Jung)

“Even if people don’t think too hard about the colours they prefer, they are subconsciously programmed to associate certain colours with specific situations and emotions: and this is true for adults all over the globe.” 1

Note: I’ve posted two blogs about beads in human antiquity and those we find in western Canada during the post-contact period (starting approximately c.1680). In them you will find many examples of glass bead types, found in an array of colours. In this third, and final blog I’ll examine one glass trade bead attribute in considerably more detail – colour.

In my last segment on glass fur trade beads, I started with this image of glass beads on an object found at the Hudson’s Bay Company (HBC) Fort Victoria (c.1863 – 1898) site, Alberta, Canada. It was a unique find. Glass beads barely hanging together forming a distinct pattern, clinging to a rotten garment thrown away perhaps over 150 years ago. But the beautiful colour patterns formed with these tiny glass ‘seed’ beads, taking hours to complete, were still discernible.

I’ve always been fascinated by colour. Beautiful hues and shades of red, blue and green are found both in nature and on the objects humans make.

Often I don’t know why I choose one colour over another. Others, however, know where to look for answers. As the title of this blog suggests, contemporary Indigenous beaders, such as Anishinaabe Malinda Joy Gray, know where to find their ‘spirit colours’. In their dreams. 2

Therefore, to better understand colour, I study it. Not only from my personal perspective. But from those of others as well. I examine how we choose a colour with one of the most colourful historic objects that humans ever made – beads. Beads, fashioned from every conceivable material throughout history, in almost every conceivable colour.

While visiting South Africa last fall (2022) I watched a San woman making beads out of Ostrich eggshells. These simple, beautiful beads, whose origins of manufacture go back thousands of years, mostly come in shades of white. Their often singular colour was offset by intricate beading designs made by the San women. However, some prehistoric people also dyed ostrich eggshell beads with hematite.

Nor it seems do others. Oh, I understand why plants are green and water is blue. Why hares are brown in the summer and white in the winter. But I’m often baffled why humans choose certain colours. Because when you look closely at their choices, there often are no set rules for doing so. Or obvious reasons for their choice. There are exceptions. But for the most part, humans choose colours for a host of reasons which are often very difficult to unravel and explain.

In this blog, I’ll examine the selection of historic bead colours more closely. First, I’ll start with a little background on why we choose specific colours, and how they affect us. Then, with a current example that we all can relate to, how we choose the colour of our automobiles. Finally, I’ll examine the colours of historic glass trade beads from Canada and the United States. Did Indigenous people prefer specific colours of beads over others and, if so, why? It’s a fascinating journey that takes us from the practical to some very unorthodox ways of thinking about colour. And the world we live in.

A few of the thousands of glass trade beads I have recovered from western Canadian late 18th – 19th-century fur trade forts. The range of colours of these glass beads was considerable. Everything from bright blues to amber and reds. Often single beads contain a variety of colours ranging from solid opaque to transparent.

Theories of Colour Choice and Effects

“There isn’t really a rational influence to our decisions other than the color evokes an emotional and physiological response in us. Ultimately we decide what colors we like because of what we associate them with and the meaning that accompanies them.” 3

Theories about human colour choice can be divided into two basic categories: 1) theories about how certain colours affect us; and, 2) theories about why we choose certain colours.

Different colours evoke different feelings in humans. Research shows that blood pressure and EEC scores differed when subjects looked at a certain coloured sheet of paper. 3 For example, red produced a higher anxiety state in people than blue.

The reason why people choose certain colours is often associated with the cultural meanings of those colours. But, here things get a little tricky. Certain colours do not project the same meaning in different cultures, countries, or even regionally. Nor do they historically. 4

“In Japan, the color yellow is associated with courage whereas in parts of the American south it can be slang for cowardice. In many Latin American cultures, it’s the color of mourning and death. In China, yellow can have vulgar connotations. In Germany, you go yellow—not green—with envy. Head over to the Middle East and you’ll find yellow is imperial and sacred (not purple, which is associated with royalty in European cultures) often worn by members of the ruling or royal classes.” 1

However, we can make a few generalizations about colour choice and meaning. For example, people in different countries liked blue, green and white the most which often also had similar meanings (i.e., white = purity, cleanliness). However, they also liked black and red, but the meaning of those colours varied cross-culturally.

Currently, the most popular theory of why humans choose certain colours is referred to as Ecological Valence Theory. In short, this theory states that humans prefer certain colours over others because of objects they either like or dislike associated with that colour. 5

“…people often like blue hues because it reminds them of clear skies and clean water. On the other hand, people tend to shy away from brown hues because they remind us of feces or rotting food… 6

I happen to own a pair of brown pants. As an archaeologist who often works in the dirt and associates it with good things, perhaps that’s the reason I’m among the few who like brown.

Some researchers have even gone so far as to suggest that is difficult if not impossible to find a negative object to associate with blue. In other words, there are few blue objects we think about negatively.

Not everyone, but many would have negative feelings about this group. And associate blue with something negative. Perhaps they are among the 12% that don’t conform to the Ecological Valence Theory of colour, that don’t like the colour blue. It would be interesting to ask Maple Leaf fans and non-Leaf fans how they felt about the colour blue.

Other theories state that colour has functions. For example, the colours you choose inform others about yourself, your family or your group. Or, certain objects are certain colours because of their high degree of visibility. According to one researcher, among the western Canadian Metis, many objects such as firebags, mitts, and whips were highly colourful so they wouldn’t get lost. 7 I can relate to this idea. When working in the boreal forest we tie bright orange flagging tape to our equipment so we don’t lose it in the dense foliage.

Whatever the reason(s), the choice of colour and the feelings we associate with it, is far from a random event. Whether we consciously know it, or not.

The Colours of the Automobiles We Drive

Before examining why people preferred certain glass bead colours historically, we’ll first look at colour choice in an object we all can relate to. The colour of our automobiles.

In a recent article in Autoloansolutions, the three main reasons people pick certain colours for their automobiles are: 1) Personal preference; 2) Resale value; and, 3) Bird droppings. 8

Yes, you read right. Bird Droppings! According to some studies, for whatever reason, birds like to dump most on red and blue cars.

As already suggested certain colours have certain meanings in human cultures and therefore signal to others something about you. In the automobile article, for example, black = intrigue/mystery; blue = confidence/integrity/stability; red = aggressive/expensive; white = innocence/purity.

However, according to colour symbolism experts, each of those same colours may have different meanings in different countries throughout the world. But, studies have shown, regardless of where you live on this planet and what those colours signify, black, white, and silver are the top colours for automobiles.

And this is where resale value comes in. If you want to eventually sell your car, you might pay attention to the most popular colours for cars (if they’re still in style when you want to sell). Given today’s colour preferences, no one’s going to buy that bright neon green auto of yours.

My Automobile Colour Study

I did a little automobile colour study in Alberta (Canada), Iceland, Istanbul (Turkey), and Stellenbasch (South Africa) this past year. I picked spots at random and counted the number of different car colours. My sample size ranged from 52 – 115. Today colours are no longer primary or secondary but different shades of grey, blue, silver and white; and a dizzying array thereof. I simply chose the one that was closest to a primary and secondary colour.

While there is considerable variation of colours of automobiles in various parts of the world, white, silver, and grey are amongst the most popular automobile colours when the four regions are combined. But when simply ranked on the ordinal scale (from 1 – 5), there are differences in colour preferences in the different regions. For example, white automobiles generally rank first in Iceland, Istanbul, and Stellenbasch, but not in central Alberta where grey cars rank first. Or, black ranks low in most countries, except in Istanbul, where it ranks third.

“Gray is the color of intellect and of compromise. It’s a diplomatic color, negotiating all the distance between black and white. We typically consider gray to be conservative, elegant, and cool, though it can be a bit mysterious. We think of gray as solemn and serious, the color of business suits and sophistication.”9

What theories about colour, including my automobile study, basically point out is that even though there is considerable overlap of colour choice among peoples throughout the world, there is often a difference in the ranking of those preferences in different parts of the world. And the meaning of those colours is not constant in the world. The meaning of black differs in the Muslim and Western world. Grey is considered a very conservative colour in the West. In China silver is a symbol of wealth, cleanliness, and purity; in Germany, sophistication.

The bottom line is that trying to interpret meaning from colour, only leads to a diverse array of possibilities. Many of which cannot be determined if we cannot ask people about them. Such as the historic period. That is because, if Ecological Valence Theory has any merit, people’s choices of colour are based on their associations and history with it – either bad, good or perhaps neutral. Many of those associations and histories are different to some degree. However, what is also interesting is that white, silver, and grey are all seen as positive, regardless of their different specific meanings.

Therefore, if we simplify these results, we might conclude that the most popular colours are associated with positive objects, feelings and meanings, regardless of what those are. When we dive into the murky past, this fundamental fact becomes important, because we cannot always determine precisely what meanings or significance of colours were for a diverse North American Indigenous population.

A Description of Fur Trade Glass Bead Colours in Historic Canada

“Oh I love all colours, I go to a store where they have beads and I imagine all kinds of flowers and I pick up everything when I’m in there – colours I don’t have. I must have over 200 kinds of colours…” (Isabelle Dorion Impey, Cumberland House, northern Saskatchewan, Canada) 10

Blue glass beads from the HBC Fort Vancouver, Washington State, USA. 11

Sources of Information and Accuracy About Historic Glass Bead Colours

Information about fur trade bead colours and varieties comes primarily from historic White written records and fur trade archaeological collections. And, unfortunately, less so from historic Indigenous written or oral accounts.

The accuracy of these types of historic evidence varies. Written accounts can be biased or records vague, or incomplete. But while there are problems, it should be kept in mind that Euro-Canadian traders had to be accurate about Indigenous bead preferences because their very business depended upon it.

Glass beads recovered from the fur trade archaeological record reflect both what was used by Indigenous women living in the forts and what was traded to Indigenous people regionally.

In this figure, the percent of glass trade beads found in the Hudson’s Bay Company (HBC) Nottingham House (c.1801-1803) inventories, listed as ‘Presents’, and those found in the archaeological remains at the site, were compared. In all three contexts, the ordinal ranking of colours was the same: blue beads always occurred in higher numbers than white beads. However, because these were samples coming from different contexts, the proportional differences in these three categories were not the same. Similar trends occur in other fur trade assemblages in both Canada and the United States. 12

Basic Characteristics of Colour and Its Description

To better understand glass bead colours we first have to know a few things about colour. Not only what different colours look like, but how they are categorized and described.

The standardization of different colours first started with Issac Newton’s colour wheel in 1666, and eventually to other standardized schemes including the Munsell colour system, developed by Albert Munsell in the early 1900s.

A three-dimensional representation of a Munsell Colour Wheel, showing hues (different colours), values (degree of darkness/lightness) and chroma (degree of brightness/saturation). Hues are divided into primary (red, blue, yellow), secondary (green, orange, purple) and tertiary colours (yellow-orange, red-orange….). Primary colours refer to the building blocks from which all other colours are derived. Also known as basic colours, as they can’t be recreated by colour mixing. Secondary colours refer to colour combinations created by an equal mixture of two primary colours. 13

The charts classify colours numerically based on three categories in three-dimensional space: hue, value (lightness/darkness), and chroma (intensity of colour). Hue refers to basic colours, such as red, green, blue, etc. In the Munsell system, these are given letter codes, i.e. Red (R), Yellow-Red (YR), Green (G), Green-Yellow (GY) and so on. Value is how light or dark a colour is. In the Munsell system, value is indicated with a number, i.e. 2, 4, 6 and so on. The value scale runs vertically and moves from lightest (at the top) to darkest (at the bottom) in descending order, so a 2 is going to be lighter than a 6. Chroma refers to the degree of strength of a colour. Chroma ranges from 2-14 (upwards of 30 for colours in the fluorescent family). Archaeologists, when researching glass bead colour, also refer to diaphaneity – the degree of transparency or opacity of a bead, or, the quantity of light that can travel through a bead.

However, the Munsell Colour Chart is not the Holy Grail of colours. Based on my personal experience, the problem with this colour scheme is threefold: 1) it wasn’t used historically to describe colours; so the historic colours don’t match the Munsell colour descriptions; 2) it isn’t used consistently by archaeologists; and, 3) people see colours of objects differently depending on their eyesight, the degree of light present, or even the degree of moisture in sediment, for example. These problems, added to the fact that glass bead batch colours were often not standardized, make for an interesting stew.

“All told, therefore, there is room for considerable variation in colour, and 18th-century and earlier beads differ considerably in this regard from those made in the 19th and 20th centuries when strict standardization became the rule.” 14

I am certain that European glass bead makers devised their bead colours using some sort of basic standard scheme, as some of the descriptions of historic bead colours suggest. For example in the Fort Union, Montana inventories, glass beads are listed as ‘blue, white, chalk white, red, green, black, yellow, coral, Cornelian, mock garnet, milk white, agate, sky blue, and purple. 15 While all the basic hues are listed, value, and chroma are absent or somehow embedded in the colour’s name. Milk or chalk white might be descriptors for diaphaneity, in this case likely ‘translucent’ or ‘opaque’. If you look up ‘Cornelian’, it refers to a variety of oranges and reds to almost black, which if we don’t have the bead, really doesn’t tell us much. And ‘sky blue’ likely refers to a bead’s value on the lightness/darkness scale, but where exactly is often difficult to determine from the name in the historic documents.

While determining a bead’s colour by using the various colour wheels has its drawbacks, the importance of these colour descriptions of glass beads recovered in the archaeological record is considerable, given the often poor, inconsistent historic documentary descriptions available. However, many of the archaeological bead colour descriptions are of our making, often based on the colour wheel such as Munsell’s. But, at least we can assign photographs of the beads with these descriptions, giving readers the opportunity of seeing these colours.

In the table below, is a word description of glass seed bead colours, from the American Fur Company (1858-59). Since colour wheels and some sort of standardization were already common then, would these colours also be similar to what we call them today?

A list of bead colours from the American Fur Company 1858-1859. This is as extensive as it gets. I have added the colours that these names refer to, assuming that some of the names have remained relatively consistent over the centuries. The different hues are apparent (e.g., blue, green, red…) But what ‘values’ and ‘chroma’ do these colours refer to? And the meaning of some of the colour descriptions such as ‘Hortentin’, and ‘Celestial’, is questionable. Often in the Canadian fur trade company inventories glass beads colours are simply listed as ‘assor’t colours’. Generally blue and white beads are listed separately but after that, it’s hit or miss. 16

Before delving further into glass bead colour, my final warning is that at a comparative level, between different glass bead assemblages collected archaeologically, the data are a minefield to be trodden through carefully. And so is the photography of different glass bead colours in the available publications. According to archaeologist Steven Devore, there is colour distortion when looking at photographed beads. He is one of the few researchers who try to get around this problem by using a colour bar in his photographs and describing exactly what Munsell colour it represents. I have borrowed his idea and applied it to some of the figures below.

Glass trade beads from the American Fort Union (c.1829-67) fur trade post. 17 Devore put a colour bar under each bead photograph and gave the bar a specific Munsell colour. White = N9.5/0; Blue = 7.5PB4/12; Yellow = 5Y8/12; Strong red = 5R4/12; Black = N2/0. Purists can then compare his bar to their Munsell colour chart to determine the amount of photographic distortion.

Archaeologists come in two forms when it comes to categorizing glass bead colour. There are ‘lumpers’ and there are ‘splitters’. Some archeologists have used the Munsell Colour chart extensively (listing hue, value, and chroma); others to a lesser extent when analyzing bead colours. Still, others haven’t bothered with variety/shades of colours. They use mostly colour hue in their descriptions, with some degree of ‘value’ (light, medium, dark), and ‘diaphaneity’ (transparent, translucent, opaque). As we shall see shortly, both methods have their advantages and disadvantages.

Below is an example of a range of glass bead colours taken from both American and Canadian fur trade forts from western North America. The colour varieties go from one extreme to the other and are often difficult to compare unless the actual bead is illustrated in colour.

Bead Color NWC George (1792-1800)Nottingham House (1801-03)Fort D’Tremble (1791-98) Fort Union (1829-67) Fort Vancouver (1829-66)
Amber   xx
Light amber    x
Reddish amber     
Yellowish amber    x
Amethyst   x 
Opaque blackxxxxx
Bluexxxxx
Light blue  xxx
Shadow blue xx  
Turquoise blue xxx 
Aqua blue  x  
Dark bluex  x 
Dutch blue x   
Medium blue x   
Dusty blue x   
Copen blue x   
Grayish blue    x
Purplish blue    x
Light purplish blue    x
Dark purplish blue    x
Dark brownx    
Cinnamon  x  
Colorlessx  xx
Greenxxxxx
Light green   x 
Dark pale green xxxx
Aqua green x xx
Apple green  x  
Palm green xx x
Yellowish green    x
Light gold xx  
Light gray xx  
Pink   xx
Light pink    x
Light purple    x
Bluish purple    x
Light reddish purple    x
Dark purple   xx
Redx   x
Red-bluex    
Brownish red     
Light red  x  
Dark red   xx
Dark purplish red    x
Opague redwood xx  
Rose   x 
Light cherry rose x   
Rose winexxx  
Ruby xx  
Scarlet   x 
Turquoise  x  
Bright turquoise  x  
Opague whitexxxxx
Oyster white x   
Pale yellow white    x
Yellowx xxx
Greenish yellow    x
Varieties =1120211929
Basic colors =86899
The presence of glass bead colour hues and varieties (according to value, chroma, and diaphaneity). Some archaeologists list basic hues and diaphaneity, and perhaps a value. While others, such as Lester Ross, National Parks Service, go into considerably more detail in glass bead colour description. I will consider Ross’s bead colour descriptions in more detail below.

Archaeologist Wayne Davis lists glass bead colours for twenty-six historic fur trade sites and Indigenous sites in Canada and the USA, but keeps it relatively simple: white, blue, black, green, yellow, red, pink, purple, turquoise, amber, grey, magenta, orange, clear, and violet. Each of those basic colours could be opaque, translucent, or transparent, resulting in a slightly different value and chroma, and thus ultimately a different shade of colour. 18

Bead ColorPeriod I: 1700-1740Period II: 1741-67Period IIIa: 1768-80Period IIIb: 1781-1820Period IV: 1821-361837-1850
Brittanyx
Blue opxxxxxxxxxx
Gobelinx
Blue tlsxxxxx
Fern greenxx
Blackxxxxxxxxxxxxxxxxxxx
White opxxxxxxxxxxxxxxxxxxx
Magenta opx
Magenta-blackxx
Red opxxxxxx
Amber-black
Green opxxxxxxx
Yellow opxxxxx
Purplexxxxx
Brown, darkxx
Yellow-blackxx
blue tlsxxxx
Green, tslxxxxxx
Clearxxxxxxxx
Magenta tslxx
Light Blue tslxxxx
Dark Blue tslxxxxxxxxx
Violet tslx
Maroon opx
Green, dark opx
Violet-blackx
Amber tslxxxxxxxx
Pink tslxx
Red tslxxxxxxxxxxxxxx
Navy bluex
Pale green tslx
Dark violet tslxx
Dark red tslx
Sky blue opxxx
Peacock blue tslxxxxxx
Yellow, tslxx
Emerald greenxxxx
Pink opx
Yale blue tslxxxxxx
Dark green tslx
Yellow-amber tslx
Turquoise opxxxxxxxx
Dark wine stslx
Gold opx
White tslxxxxx
Bronze opx
Bright orangex
Yellow-orangex
Cobalt blue tslx
Jade green opxx
Indigo bluex
Peacock blue opxx
Robin’s egg blue opxx
Dark purple tslx
Brilliant blue tslx
Yellow opxx
Aquamarine opxx
Peacock green opx
Yale blue opx
Surf green opx
Heliotrope opx
Pearl whitex
Chrystalx
Total Varieties10196144227
***(tsp = transparent; tsl = translucent; op = opaque)

Wayne Davis’s glass trade bead colours were taken from 26 trading posts and First Nations archaeological sites from the USA and Canada. The glass beads range from as early as c.1700 to c.1850. The x’s in each column represent how often the various glass bead colour types occur in each period found in the various collections. Because the number of sites and beads in each period varies, the number of colour varieties may not be a true reflection of preference for each period. However, after 1820 when fur trade posts were established further west in the USA, and direct trading at posts began there is a greater proliferation of bead colour varieties. This increase in varieties may have more to do with glass bead assemblages coming from trading posts instead of Indigenous campsites.

I have taken Lester Ross’s glass bead colour scheme and presented his colours, to give you some idea of the range and variation in glass bead colour. Often it is considerable, even in just one primary colour. This enormous collection of over 120,000 beads, spanning a considerable period likely contains every possible bead colour ever sent to the fort. It would reflect what the Hudson’s Bay Company would have in stock at the time in that region. I personally, after looking a many fur trade assemblages, rarely see beads outside Ross’s bead colour range. The exceptions may be gold and silver beads which are more common in the latter part of the 19th century.

An example of basic information about glass beads found at the HBC Fort Vancouver, Washington State, USA. The authors cross-reference their glass beads with those of Kidd& Kidd’s classification system whenever possible. Chroma is used differently than the standard means (which is found in the Munsell colour description). Here it simply refers to whether a bead is single-coloured (monochrome) or multi-coloured (polychrome). 19

Below are examples of Ross’s Fort Vancouver glass bead colour varieties. I have listed the Munsell code under each colour so that if you wish you can check these published colours against those found in the Munsell colour chart. I found, even when pasting certain colours into a word program that the colours occasionally changed slightly.

These different coloured glass trade beads represent the potential selection of colours Indigenous people had in the western United States. But, which ones did they choose most and prefer? 20

Historic References to Indigenous Colour Preference and Meaning

I was fascinated by an article about the use of colour on the Northwest Coast, written in the Smithsonian’s National Museum of the American Indian, by Melonie Ancheta. 21 In it she makes two very important points about the meaning and use of colour: 1) Northwest Coast First Nations had a long history (before colonization) of using colours – primarily black, red, blue and green; and, 2) these colours were integrated into their culture, their, “…cosmologies, rituals and daily life…”

And, as Ancheta points out, there were long-standing rules, or customs, of ways of using these colours and painting specific pieces of art or spiritual attire. Or certain colours were associated with certain segments of Northwest Coast society. Blue (made from vivianite), 22 for example was more associated with shamans, clan treasures, ceremonial objects, and reserved for nobility in Tlingit society.

Haida female portrait mask with labret and facial tattooing, Peabody Essex Museum, E3843. According to Ancheta, “On three-dimensional pieces such as rattles and masks, the fields are not so clearly demarcated. For instance, the eyebrows on masks are usually painted black, red fills the lips and nostrils, and blue or green, if present, represent the color of skin or “tattooing.”23

My point is, that before European contact, many primary colours (red, yellow, blue, green, white, black) 24 were already well-established in North American Indigenous societies. There were likely rules for their use (now mostly lost) and meaning behind them. Glass trade beads, and the various colours they came in, were integrated into already well-established Indigenous traditional schemes.

Since blue was difficult to make, it’s not surprising to find historic quotes stating that on North America’s Northwest Coast, many First Nations tribes valued blue glass trade beads the most. Just how the introduction of these beads, now more readily acquired by anyone who would trade, affected traditional uses of the colour (which because the mineral vivianite was hard to acquire and therefore relegated to only certain objects and people), is a question worth considering. 25

And on the Great Plains of North America, various First Nations societies had similar preferences. Here are a few examples:

Among the Arikara: “…any object which exceeds that of a buffalo robe. Ammunition, knives, spears, blue beads, tomahawks, and framed mirrors are the only articles for which they are willing to exchange their robes.” 26

Among the Sioux: “The blue bead, as precious here as porcelain among the nations of the Mississippi…” 27

Archaeologist Wayne Davis summarizes colour preferences (supported by numerous historic quotes), by North American Plains First Nations this way:

“As these different excerpts seem to suggest, blue and white, in that order, were without question the most popular colors for all the Plains’ tribes, as well as for many of the tribes in the Pacific Northwest and elsewhere.” 28

Undoubtedly as the archaeological glass bead samples suggest, although Indigenous people used other bead colours, blue and white glass trade beads were by far the most common. In 1854, for example, according to ethnographer, Edwin Denig discussing glass bead colour preference on the Upper Missouri, “Small round beads of all colors are used in adorning every portion of their dress.” 29

It is evident then, that there was also a great deal of commonality in glass bead colour preference amongst different Indigenous groups over a large geographical area. As an example, western Plains and coastal peoples preferred blue and white beads over all others. Archaeologist Steven DeVore (1992:60-61) states that blue, white and black were generally the most popular colours amongst Northern Plains First Nations, but red, green, yellow, and lavender were also used but in smaller quantities. 30

During the initial contact period in the mid to late 18th Century, Alaskan First Nations peoples preferred blue and white beads most, but used other bead colours as well. 31

According to ethnologist Kate Duncan (1989:44) the Fort Yukon journals indicate that there was a definite change in bead colour preference by the late 1860s to more of a demand for amber, crystal, blue, white, black, red, and ruby. As well, in other parts of the northwest, more variation in bead colours occurs temporally 32

According to Alexander Henry for the Assiniboine during the late 18th to early 19th Century, the most sought-after trade goods included, “…brass rings, brass wire, blue beads, and other trinkets.” 33

Others, however, suggest that not only were blue beads the most highly valued but that certain colours had meaning or rules about where they could be worn. “The women ornament their dresses….with broad diversified stripes of sky to blue and white beads. The Indians do not like beads of other colours, for instance, red next to the skin.”34

When the Kutchin people met Alexander MacKenzie they demanded blue beads over all others. 35

Unfortunately, virtually nothing is said about the degree of variability of colour preference within specific First Nations groups or other potential temporal changes of colour preference between First Nations groups. According to Duncan (1989:78), there was individual variability in colour preference and regional preferences even among Athabascan-speaking people. Pink, aqua and green beads dominated Eastern Athabascan beadwork, while white, navy, green, red, pink, greasy yellow, and green dominated western Athabascans. 32

If we can generalize, these are the predominant glass trade bead colours used historically by First Nations, Inuit, and Metis people:

  • Sioux: white background, bold blues, yellow, shades of green and pink;
  • Cheyenne: white background, more turquoise and transparent beads, red;
  • Ojibwa: multi-coloured backgrounds, dark red, clear, and black;
  • Cherokee: more black in beading than other First Nations groups;
  • Eastern Woodland: floral patterns and lots of multi-coloured designs;
  • North West Coast: heavy emphasis on dark blue, and white;
  • Blackfoot: white background, heavy emphasis on blue beads; other colours used sparingly;
  • Dene: multi-coloured backgrounds and many colours used in designs; greater emphasis on blue further west;
  • Inuit: white and many black beads;
  • Metis: “the more colours, the better.” (Bertha Desjarlais) 36

Unfortunately, there are only a few references, such as Duncan’s, in the literature about any continuity of colour use from the prehistoric to the initial contact period, and beyond, in western North America. According to Alexander Mackenzie, at the time of contact, quill work and moose hair were the primary decorative embroidery in the Northwest Territories using natural dyes of red, black, yellow, white, and blue. 37

SITE/REGIONVolume (lbs)White (%)Blue (%)Other (%)
HBC Inland, western Canada, 1799330.525.348.426.3
NWC Inland, western Canada, 1792113.033.067.0
HBC Nottingham House Inventory, 18037.7538.761.3
Nottingham House – Presents or Traded, 18033.033.066.0
Fort Union, 1840 Inventory1,72846.853.2
Glass trade bead inventories from three different sources, ranging from 1792 – 1840. These figures show not only how extensive the trade of glass beads was but that blue and white were by far the most preferred colours among Indigenous people living on the Northern Great Plains to people much further north in the Athabasca region of Northern Alberta, Canada.

But, by the late 18th century, and then by the end of the 19th century the glass bead colour palette was extensive. Glass bead styles and colours were in high demand in the Indigenous world. And if not met, trade suffered:

“….the frustrations involved in trying to ensure an up-to-date inventory of beads of acceptable size and color for a market that changed faster than the time required to order and receive goods from England.”  (Trader Alexander Murray, Fort Yukon) 38

Colour as a Means of Communication

“People give objects meaning, but cultural meaning is rarely stable. Objects and clothing actions that had significance in certain historic contexts are sometimes forgotten, while others endure for generations.”39

Different colours can have meaning – which is often very elusive to determine historically, as the above quote suggests. But, at a more base level, colour can also be used as a means of communication, and thereby carry information and meaning. For example, different colours or colour combinations can be used to communicate one’s ethnic affiliation and social position to others. Historically we may be able to reconstruct ethnic affiliation (i.e., certain groups using a specific array of colours or proportionally more of one colour than others) and social position (i.e, the use of a certain colour by certain individuals in a group) by simply aligning various colours with different ethnic groups or sub-groups.

Colour and bead patterns can therefore be examined using different units of analysis of comparison. In historical archaeology, unlike most prehistoric archaeology, we often have an accompanying historic record to help identify and define those units of analysis, enabling us to then investigate whether people, regionally, in communities or individually used colour as a means of social expression. There are hints that indeed this might be true. But, as we have seen it is difficult, if not impossible, to examine this question with fur trade post inventories, because the records are often incomplete or vague to use for comparative purposes.

According to those historic records, colour, including that of glass trade beads, defined groups and social positions (i.e., rank, gender).

  1. Regional Level: According to Sherry Farrell Racette, when discussing Metis beadwork and colours: “The vitality of the colour palette of nineteenth century beadwork and embroidery corresponds with the comparative prosperity and vigor of that collective identity. Smaller Half Breed collectives, not associated with the Métis, also used clothing and common aesthetics to communicate distinctiveness.” 40

2. Community Level: Distinctions between communities are often also expressed in bead colour differences: “Small decorative elements could also distinguish the work of one community from another. Moccasins made in Ile à la Crosse, particularly those made by the grandmothers of the community, have a distinct visual marker that identifies their community of origin. Three to four rows of alternating deep blue and white beads outline the beaded vamps. The same blue and white border is used on cuffs and other pieces of beadwork. Within the larger aesthetic tradition, regions, communities and individuals developed recognizable styles.” 41

3. Family level: “Some elders recalled specific colours and designs associated with particular families. I remember] that story my grandfather told me about the sashes and it was in the context of him lamenting that you couldn’t leave your stuff out any more that people just stole it. He said that long ago you didn’t do that because people knew what was yours. If you had it wrapped with your sash everybody knew it was yours because of the colours the family used. They knew that it belonged to the Bouviers, or it belonged to the Gardiner’s or to the Daigneault’s. It was essentially a way of marking.42

4. Individual Level: Among Metis men, different coloured hats distinguished them from white gentlemen and officers. “Cowie described “low, broad brimmed black hats” worn by the Métis, while “grey felt” was worn by “gentlemen and officers.” Age was also a factor in headgear chosen by “younger Metis [who] favored rather than the hat, pill box caps of fine black cloth or velvet, adorned with beads or colored silk work and a large black silk tassel attached to the crown.” 43

What the Archaeological Record Reveals About Bead Colour Preference

“It is doubtful if comprehensive examination of all records for a number of posts over a period of time would yield a clear understanding of beads traded there, particularly since the bead company records to help in the clarification of terms, sizes, and colors are not available.” 44

Ethnographers have essentially dismissed the reliability of historic fur trade fort records to provide accurate information about Indigenous glass trade bead preferences, including colour.

What about the archaeological records in western Canada? Are they a reliable source of information about Indigenous bead colour preferences? Where we often find thousands of glass trade beads at these forts. It seems, here too there are problems. Let’s investigate a few of them.

Researcher Bias in Glass Bead Colours – A Small, but Necessary Diversion

What is it about these archaeological assemblages that might make us hesitate to use them to investigate Indigenous bead colour preference? Two types of bias come to mind: 1) whether fort bead assemblages truly represent what Indigenous people used in a region; and, 2) whether there is any bias in the way the beads were collected.

In the first instance, most glass bead assemblages come from excavated fur trade sites and very few historic indigenous encampments or settlements in western Canada. Is it safe to interpret outside (the fort) Indigenous bead colour preference directly from these fort assemblages which represent both what beads were traded to people bringing in their furs and what Indigenous people living at the forts were consuming?

However, the fort inventories, representing what bead colours were traded or gifted to Indigenous people do seem to be similar (on an ordinal scale of comparison) to the fort bead archaeological assemblages. 45

Occasionally there are instances where direct proof can be obtained, such as comparing a historic fort bead sample directly to an Indigenous camp sample to see how similar they were.

Archaeologist, Aaron Crowell was able to make such a comparison. 31 He compared the Indigenous encampment bead samples to the fort bead assemblages. I summarized Crowell’s results below. In terms of proportions, and ordinal rank the two later period (post-1830) bead colours were very similar.

In this figure, when bead colours are categorized simply to ‘white’, ‘blue’ and ‘other’, the relative percentages collected for the post-1830 Indigenous and fort assemblages are relatively similar, while bead colour proportions collected from those pre-1830 assemblages are considerably different from the later period assemblage. They contain fewer ‘other’ colours and a greater proportion of blue beads.

The second problem with the archaeological bead assemblage involves recovery bias. Seed beads, less than 2mm in diameter, are the most common type of bead. They are hard to see when excavating and historically some of the darker-coloured beads may have been more easily lost if accidentally dropped. While it’s virtually impossible to verify the latter inference, we can examine whether our methods might be biased toward the recovery of more visible coloured beads (white, and yellow, for example).

Just to give you some appreciation of glass bead size, consider trying to find these beads while excavating. They range from small to tiny. Once we get into the latter half o the nineteenth century, some seed beads are 1mm or less in diameter.

Some archaeological studies suggest there is no bias in bead colour recovery during excavations. 46

In this experiment conducted by Bundy et. al., a one-metre square was divided into four quadrants. Only the NW quadrant was fine-screened (1mm mesh screen) while the other three quadrants were screened using regular screening methods (~6.4mm mesh). The results indicate there is virtually no difference in either the recovery of different-sized or different-coloured beads. Suggesting of course that the more visible white seed beads are not being found more easily than other darker coloured beads. 47

While excavating at the NWC/HBC Fort Vermilion I (c.1798-1830) site we conducted a similar experiment to see if we could replicate the Bundy et. al results. As the figures below show, our results differed considerably from theirs. Not only did we recover proportionally more seed beads (twenty-three percent more) in the fine screens, but also proportionally more of the darker bead colours. 48

Results obtained when comparing glass seed bead colours obtained from fine-screened (1mm mesh) and regular-screened samples at Fort Vermilion I, Alberta, Canada. Our results show there is a bias toward the recovery of the more visible white seed beads when fine-mesh screens are not used.

So, as you can see, most types of historic evidence used to examine Indigenous bead colour preference have their setbacks. Including the archaeological record. Those deficiencies must be kept in mind when considering my following interpretations about Indigenous bead colour preference.

Temporal and Regional Trends in Archaeological Bead Assemblages

Despite difficulties with the archaeological evidence can we still discern some trends in the glass trade bead data that inform on Indigenous glass bead colour preference in western Canada? And, the meaning of, or factors responsible for, those trends?

In a 2015 monograph describing the Fort Vermilion I archaeological results I undertook an extensive investigation of the archaeological bead assemblage and Indigenous colour preference. 49 Consult this source for a more in-depth look at my results. And, where I feel more detail is necessary here, I will include it in the footnotes.

My glass bead samples come primarily from fur trade posts in Alberta, Canada, but occasionally I incorporate evidence from further afield.

The location of some of the fur trade posts described in this study. The Hudson’s Bay Company divided the then-Northwest Territories of Canada into major districts. In Alberta, the Athabasca and Saskatchewan Districts each had a major headquarters (Fort Chipewyan in the Athabasca District; Fort Edmonton in the Saskatchewan District). The Company supplied the district forts with trade goods that the Indigenous populations of those areas preferred. Preferences varied, for glass beads for example, over this vast region which consisted of mostly Dene and Cree peoples in the Athabasca Region and Blackfoot, Cree, and Assiniboine peoples in the Saskatchewan District. Eventually, a large Metis population would inhabit both regions,

Below is a list of glass bead assemblages from fur trade forts and other historic sites used in this study. Although there are more archaeological assemblages, not all of them were used because some cover long periods and therefore are inadequate to examine possible glass bead colour changes over more discrete periods of time.

For the first comparisons I have simplified the bead colour palette because of the many different ways glass bead colours have been described in the literature. Also, historically blue and white were the most common or popular colours. And the most profound changes, either temporally or ethnically (e.g., Dene vs Blackfoot) occurred in the proportions of the use of these two colours but also the use of a more different or diverse range of colours either temporally or regionally. This then leaves us with three basic bead colour categories: 1) white; 2) blue; and, 3) other (all other coloured beads). Even though there are many hues of blues or whites, I have simply lumped them all together for these comparisons.

I also divided the available glass trade bead assemblages into broad categories representing time and space. These divisions were chosen for practical and historical reasons. Unfortunately, not all fur trade sites were occupied in neat discreet units of time. This unevenness makes it difficult to examine bead colour preferences over time. 50

Secondly, according to Kate Duncan 32 and Karlis Karklins 51 somewhere around 1830, the Indigenous floral design in embroidery and beadwork continued to spread to northwestern North America from its place of origin in eastern Canada. How did this change from the use of primarily geometric patterns to floral designs by Indigenous populations affect the proportions of the above bead categories? Surely flower designs weren’t just blue and white.

Therefore, based on these historic circumstances, I divided the bead assemblages into those that represented the pre-1830 period and those that represented the post-1830 period to answer this question.

Based on historic paintings and ethnographical references, after European contact not only are the designs used by some First Nations and Metis people different, but the proportions of either thread or bead colours may also have changed. Metis were also renowned for their use of floral design motifs and their rich array of colour schemes. In other words, they all used an array of thread and bead colours to decorate their belongings, but it is difficult to document how the proportions of these colours varied over time and space.

Nor were the various Indigenous groups relegated to discreet geographical areas. Boundaries were fluid and overlap occurred. To complicate things even more, as the population of people of mixed ancestry (white-first Nations unions) grew, most women (partners of fort employees) living at the fur trade forts were of Metis origin. However, as the above diagram shows First Nations groups who used a mostly geometric design occupied the southern parts of the Saskatchewan District and those that used a floral design lived mostly in the Athabaska District. Metis people, highly renowned for their floral embroidery and beadwork, resided in both districts.

Fort/Region Pre-1830TOTAL% White% Blue% Other
Athabasca District Posts
Nottingham House 523,18146.029.025.0
Wedderburn 538934.857.37.9
Boyer River Post 547848.040.012.0
Fort Vermilion I (1999-2004 sample) 5511460.534.25.3
Fort Vermilion I (2014-16 sample) 56146050.835.713.5
Fork 574311.616.372.1
Rocky Mountain Fort 584,01447.619.032.8
Lac La Biche Post 592070.015.015.0
TOTAL4431.224.14
Saskatchewan District Posts
Piegan Post 601346.253.80.0
HBC Rocky Mountain House 6110,63369.030.10.9
NWC Rocky Mountain House 626,47342.852.64.7
Augustus/Edmonton I 631266.733.30.0
Augustus/Edmonton III 6470336.750.113.4
Buckingham House 6459443.443.313.3
Fort George 6520,58867.020.013.0
Paint Earth House 6612524.852.822.4
Fort D’Tremblante 6719,647533314
TOTAL4941.89.2
List of fur trade fort glass bead assemblages dated before 1830 from the Athabasca and Saskatchewan Districts.
Fort/Region Post-1830TOTAL% White% Blue% Other
Athabasca District Posts
Fort Vermilion II 6841030.224.944.1
Dunvegan 695440.727.831.5
All Northern Posts45435.526.937.8
Saskatchewan District Posts
Fort Victoria 70 8030.972.027.1
Edmonton V 71 8048.833.817.5
Jasper House 7290620.840.838.4
All Saskatchewan River Posts178923.548.927.7
List of fur trade posts, dated post-1830 and their respective glass bead assemblages.



Indigenous Dunvegan, Burial #1 (Early)27562.936.70.4
Indigenous Dunvegan, Burial #2 (Early)~6,500Primarily white and blue
Dunvegan, Hearth (?)250.050.00.0
Peace Point (First Nations)250.00.050.0
Alaska Sites (Pre-1830)1,09329.741.716.8
Kolmakovskiy – Russion Alaska Fur Trade post (1870-1917)1,54138.121.737.9
Alaska Indigenous Sites (Post-1830)1,09643.819.733.4
MacKenzie District – Gwitchen Early (pre-1800)1687.56.36.3
MacKenzie District – Gwitchen (1820-1850)16158.47.552.8
MacKenzie District – Gwitchen (1850-1880)120.041.758.3
Site/RegionTOTAL%White%Blue%Other
Indigenous Dunvegan, Burial #1 (Early) 7327562.936.70.4
Indigenous Dunvegan, Burial #2 (Early) 73~6,500Primarily white and blue
Dunvegan, Hearth (?) 73250.050.00.0
Peace Point (First Nations) 74250.0050.0
Alaska Sites (Pre-1830) 751,09329.741.716.8
Buffalo Lake Metis, Cabin 3 76 1,54138.121.737.9
Alaska Indigenous Sites (Post-1830) 771,09643.819.733.4
MacKenzie District – Gwitchen Early (pre-1800) 771687.56.36.3
MacKenzie District – Gwitchen (1820-1850) 7716158.47.552.8
MacKenzie District – Gwitchen (1850-1880) 77120.041.758.3
Buffalo Lake Metis, Cabin 3 78 3,2182.113.884.1
Cypress Hills Metis, Cabin B 792201.881.816.4
Cypress Hills Metis, Cabin E 79260.073.126.9
Victoria Metis Settlement 8014.342.942.9
Batoche, Latendre Metis 818219.518.356.1
Red Deer River Forks Metis 822412.562.525.0
Fort Chipewyan III-IV (1803-1872) 835616.167.916.1
Rosebud, Burial (c.1855) 8461890.06.63.4
Last Mountain Post 8556,92919.623.457.0
For Union (Montana, USA) 8638,49034.842.722.5
Other First Nations, Metis and fur trade fort bead assemblages.

Glass Bead Colour Proportions

When glass beads became available to the Athapaskans in sufficient quantity for embroidery, they were readily applied to garments and accessories in the decorative traditions already established using porcupine quills and seeds. Beads were definitely present among some Athapaskans in both the east and the west sometime during the eighteenth century, but the details of their arrival remain lost to history.” 87

Not only was the first adoption of glass beads by Athabascan speakers murky but so also were bead colour preferences by various other historic Indigenous groups in western Canada. Did those colour preferences change over time?

I will first examine this question with two northern fur trade bead assemblages spanning the pre- and post-1830 periods – Fort Vermilion I (c.1798-1830) and Fort Vermilion II (c.1830-1934). Both forts are located in northern Alberta along the Peace River approximately eighty kilometres apart from one another. Both forts served a primarily northern Athapaskan population, but to a lesser extent also Cree and Metis. The results of the comparison of their respective bead colour proportions are shown below. There was a considerable increase in the ‘other’ bead colour category in the post-1830 Fort Vermilion II assemblage.

A comparison of the three bead colour categories between the two forts shows a considerable increase in the use of other bead colours, aside from white and blue.

In the next comparison, I combined all the fur trade fort bead assemblages and then divided them into two time periods. The results, shown below, indicated that there is an increase in the ‘other’ bead colour category in the post-1830 bead assemblages.

Comparison of bead colour preference from all regions between the two major periods. There is a significant increase in the proportions of ‘other’ colours of beads in the post-1830 assemblages.

Since we are also interested in comparing possible regional differences in bead colour preferences, I divided the bead assemblages into both time (pre-1830) and space (Northern and Central/Southern). The results, shown below, indicate that not only do bead colour preferences change over time, but also regionally. But, at different rates. Over time, there is a far greater increase in the ‘other’ bead colour category in the northern bead assemblages (31%) than in central/southern bead assemblages (19%).

This comparison suggests that while bead colour preference changes over time in both study regions the difference in change is significantly greater in the northern bead assemblages than the central/southern bead assemblages.

Are these changes in bead colour preferences just a regional phenomenon or are they more widespread than just in Western Canada? Although currently my database is limited to examine this question more thoroughly, the results (shown below), suggest it is more widespread. 88 But, again there is a far higher rate of change in the ‘other ‘ bead category in these northern assemblages than in those further south. When all the northern assemblages (Athabasca, Mackenzie, Alaska) combined are compared to southern assemblages there is a 26% increase in the former and only 16% in the latter (shown in the table below).

While the changes in these bead colour proportions are real enough, finding explanations for them is somewhat more difficult. Especially when we consider that various different ethnic groups inhabited each region. The crux of the issue comes down to this: even though different Indigenous groups occupied each region, their greater spatial proximity to one another (than to people in other regions) resulted in more similar use of bead colours. Is spatial proximity that powerful a factor, despite considerable Indigenous ethnic diversity in a region, to create continuity in bead colour choice?

Unfortunately, currently, I don’t have the kind of data to explore this possibility in more detail. Numerous historic references seem to support this view. Our automobile colour study also seems to suggest as much despite the considerable ethnic diversity in some of those countries (more so in Canada and South Africa than Iceland and Turkey).

Number of Glass Bead Colour Varieties

While there seem to be differences in bead colour proportions temporally and regionally, exactly what was changing? The above bead colour categories mask some of the changes that might be occurring in the ‘other’ bead colour category. Were more bead colour varieties being added temporally or regionally to account for these higher proportions? Or were only certain colours in the ‘other’ category being used more frequently thereby increasing the relative proportions in the ‘other’ bead colour category?

Source/FortMedian Occupation DateBead Colour VarietiesTotal Beads
Davis172010N/A
Davis175419N/A
Davis17746N/A
Fort D’Tremblante17942020119
Fort George17961120894
Buckingham House1796N/A
Augustus/Edmonton I1798.5412
Rocky Mountain Fort1799917176
Davis1800.514
Nottingham House1802202887
Rocky Mountain House (HBC)1810710832
Rocky Mountain House (NWC)1810266512
Edmonton/Augustus III1811.5141308
Vermilion I1814131460
Wedderburn1828981
Davis1828.542N/A
Davis1843.527N/A
Fort Union18481938490
Vancouver1847.52955000
Fort Edmonton V1867.51280
Last Mountain House18712160063
Vermilion II188011419
Fort Victoria188116803
Dunvegan1898827
Mean: Median Dates 1720 – 182813
Mean: Median Dates 1828.5 – 189819.4
Data come from the same sources cited in an earlier Table. The median occupation date refers to the central date of occupation for a fort. For example, if a fort was occupied from 1800 – 1810, the median occupation date would be 1805.

While seemingly straightforward forward this is a very difficult question to answer with bead archaeological assemblages. Namely, because bead colour variety is not just a function of what people used historically. It is also dependent on archaeological sample size, and even archaeological site occupation length. 89

I took what available data there was regarding bead colour variety and made some preliminary comparisons. In these comparisons, bead colour variety refers to all bead colours, including shades of white and blue. Although the historic documentary literature points toward a greater variety of bead colours in the market over time, this does not necessarily mean that people used more of them. The raw data for these comparisons are shown in the table below.

The scattergram below, comparing the median archaeological site occupation dates (X-Axis) to the number of bead colour varieties (Y-Axis) seems to confirm this observation. There was no steady increase in the number of glass bead colours over time.

The relationship between median archaeological site occupation date and the number of glass bead colour varieties. The results show that through time there is a great deal of variability in the number of bead colour varieties present at these sites. While there may have been a greater number of varieties to choose from in the latter part of the 19th century, at this level of comparison this greater choice did not occur. 90

When the mean variety of bead colours is compared between sites with occupation dates before and after c.1828 there is an increase (from 13 to 19.4 colour varieties in the total sample and from 15 to 19.3 colour varieties in the samples with high bead numbers). However, despite this increase, statistically the means are the same. 91

The above results suggest there was considerable variability in several glass bead colour varieties through both time and space. Keeping space constant (comparing assemblages of different periods within a region), I wanted to see first if differences existed. I examined bead colour variety between Fort Vermilion I and II – two forts in the same region but from different periods. The results shown in the figure below along with comparisons between regions and time, do not show the expected trend of the use of more colour varieties through time. Nor do they show what the comparisons of bead colour proportions showed – namely a greater use of ‘other’ colours in the northern bead assemblages.

Comparison of the Mean number of glass bead colours over time and regionally.

It seems, therefore, that the greater proportional use of ‘other’ bead colours either temporally or regionally (i.e., higher in the northern bead assemblages than the Saskatchewan District assemblages), is not a function of the use of a greater variety of bead colours.

If it’s not the result of a selection of greater bead colour variety, then why do the proportions of the ‘other’ bead colour category increase over time and regionally? Let’s take a specific example where bead colour proportions change through time but bead colour remains relatively similar – Fort Vermilion I and II. Below is a breakdown of the glass bead colours recovered from the two forts.

Fort Vermilion I (2014-16 sample)Fort Vermilion II
ColourQuantityPercentQuantityPercent
Black17900
Clear4211
Dark Indigo221100
Turquoise10.521
Grey10.511
Pink on Green18900
Pink428149
Pink, medium2100
Dark Purple3221
Red41214225
Yellow794185
Green002616
Total19299163
Total Bead Sample1460
Total Colours118
Comparison of glass bead colours (other than white or blue) from Fort Vermilion I (c.1798 – 1830) and Fort Vermilion II (c.1830 – 1930). The total bead sample size for Fort Vermilion II is 419. 92

The first thing to note is that some colours are either absent or change in importance (percent) over time – there is a dramatic increase in pink and green over time and a decline in Dark Indigo, black and yellow while red remains relatively constant. Preference for certain different bead colours is changing while it seems the use of greater varieties of bead colours is not. 93

And if you look more closely at the data, even though there are fewer bead colours in the Fort Vermilion II bead assemblage, the first three highest bead colour percentages make up 90% of all colours while they only make up 73% in the Fort Vermilion bead assemblage. In short, fewer bead colours occur in larger quantities in the Fort Vermilion II assemblage. And their high numbers relative to total bead assemblage (counting all the whites and blues) account for the proportional increase in the ‘other’ bead colour category. These differences are graphically depicted below in the cumulative percentage graph.

Cumulative percent glass bead colours between the two fort bead assemblages.

A comparison of two bead assemblages from different regions in Alberta produced similar results to those above. Below is a list of bead colours from the Athabasca region HBC Nottingham House (c.1801 – 1803) and the Saskatchewan District NWC Rocky Mountain House (c.1799 – 1821). Even though Rocky Mountain House had 26 different colour varieties, most of these were different shades of blue with only twelve actual different colours. It is also obvious that the ordinal rank of colours between the two assemblages differs. And the Rocky Mountain House coloured bead assemblage only represents 4.7% of the total while the Nottingham House assemblages make up 25% of the total. And like the temporal comparison between the two Fort Vermilion sites, it was not a greater increase in bead colour varieties at Nottingham House that created these differences. It was simply a higher proportional use of certain coloured beads that created that difference.

Nottingham HouseRocky Mountain House
Bead ColourQuantityPercentQuantityPercent
Black110.6257.7
Redwood39120.9257.7
Ruby402.100
Rose Wine27314.623271.4
Scarlet00175.2
Red Mahogany0041.2
Bright Green30.261.8
Dark Pale Green1859.910.3
Apple Green75400
Aqua Green10.0500
Dark Grass Green0010.3
Turquoise77341.310.3
Light Gold1206.400
Mustard Gold00123.7
Sunlight Yellow0010.3
Total 1872325
Total Bead Sample36106512
In this comparison, unlike the Fort Vermilion I and II comparisons, both bead samples are sufficiently robust to eliminate possible bias from sample size.

In summary, historic glass bead colours differed proportionally over time and in large regions of western Canada and the United States. Certain bead colours were preferred over others in specific regions or during specific periods. Although there was likely a greater potential selection of bead colour varieties later in the 19th century, it did not necessarily result in the use of a greater variety over time or regionally. People preferred certain colour schemes during certain periods and regions. The reasons and meaning for the choice of those colours were likely as complex as they are today, being influenced by the personal, cultural and ideological customs and values of their people. And, let’s not forget the role of fashion driving the choices in colours that were made.

Canada’s Metis – The Flower Beadwork People

It is perhaps fitting to end this blog about historic glass bead colour with Canada’s historic Metis who were also known as the ‘Flower Beadwork People‘, renowned for their brightly coloured floral designs in both beadwork and embroidery. 94 How does their use of bead colours compare to other assemblages?

A beautiful example of floral beadwork on a firebag in the Royal Alberta collections (part of the Earl of Sothestk collection). James Carnegie, the 9th Earl of Southesk, acquired the bag during his North American travels including stops in western Canada. The initials “WJC” in the beadwork suggest this octopus bag was made for Chief Factor of Fort Edmonton, William J. Christie by his wife, Mary Sinclair Christie – a Métis woman with Anishinaabe roots who in her teens spent time in Red River before moving to Fort Edmonton in 1858.

This is also a good example of the transmission of the eastern Indigenous floral beadwork design and other design elements from Eastern to Western Canada in the nineteenth century. For more details about this bag go to the attached footnote and the Royal Alberta Museum website. 95

Unfortunately, there are very few archaeological bead assemblages that are definitely Metis. Below I have listed the archaeological sites that represent Metis settlements or farmsteads (river lots) and have beads samples available for examination. Keep in mind that this sample size is small and the results preliminary. However, the results indicate that the ‘other’ bead colour category in these assembles is very high. Higher even than most other Saskatchewan District bead assemblages. However, also like these assemblages the Metis were not necessarily using a greater variety of bead colours at any given time. Only a higher proportion of some colours.

The image below of a beaded cushion, dating around c.1880, and like the octopus firebag, supports my contention that relatively few varieties of bead colours were used, but some in very high proportions. White and blue beads were used in lesser numbers in this flower bead pattern.

A beaded cushion, Fort Vermilion I region, made by Metis Francoise LaFleur Moberly, wife of fur trader, Henry John Moberly. This cushion is thought to date between 1879-1885.
(Photograph courtesy of the Fort Vermilion Museum, Alberta, Canada)

Also at the beginning of this blog, I showed an image of a colourful piece of beadwork found at the HBC Fort Victoria (c. 1864 – 98). It was found in the men’s quarters and was likely fashioned by a Metis woman perhaps living at the fort. As with the cushion, the proportion of coloured beads relative to white and blue beads is quite high. Below is a schematic drawing of the colour pattern that was used based on this archaeological find.

Below is a photograph of a Metis sash I was given at Lac La Biche, Alberta, Canada for my work with the Metis. It’s quite evident that there is considerable similarity in the colour scheme of both these objects. Not the same but similarity nevertheless. The sash, a major symbol of Metis identity in Canada varies in colour schemes but certain colours seem to reoccur.

This is the reconstructed bead pattern from the garment found at the HBC Fort Victoria (c.1864-98). The types and proportions of bead colours are relatively similar to the Metis sash below, with blue and red dominating the colour spectrum. This image was modified from information in the Fort Victoria report. 96
This Metis sash from Lac La Biche, Alberta, Canada contains five basic colours, ranked according to their frequencies. Red and blue dominate. According to an article in New Journeys.ca 97 even today there is more than one meaning for these colours on the Metis sash among Metis: “According to the BC Métis Nation, red stands for the blood shed over many years of Métis people fighting for their rights, blue is for the depth of spirit among Métis people, green is for the fertility of their great nation, white stands for their connection to the earth and creator, yellow is for prosperity and black stands for the dark period of suppression and dispossession of Métis land.
Other organizations say the red and blue stand for the two Métis flags: the blue infinity flag signifying Scottish and French heritage and the red infinity flag some say was for hunting.”

A Few Concluding Remarks

The use of colour by humans and the reasons for choosing them are complex and often difficult to understand. When we step back into history the task of understanding colour becomes even more difficult because of either scant or biased evidence.

Despite these issues, I believe the historic archaeological bead data have been under-utilized when it comes to documenting and understanding historic Indigenous bead colour. Investigation of these assemblages has its advantages. Instead of guessing what the historic names for colours might mean, we can examine the actual bead. And, because the assemblages cover a considerable period of time and space, we can take a comparative approach to investigate them.

It is clear, both in contemporary and historic Indigenous societies, colour preference is a moving target. It is not a static entity but seems governed by ever-changing preferences over time and space.

To tag a certain colour with a certain meaning is therefore difficult if not impossible. Perhaps we have to reduce the entire mess down to the fact that some colours, because we associate them with specific things or events, make us feel good while others do not. And it seems there is a great deal of variability among humans in those choices. In other words, a colour I might prefer would not always be preferred by others, or in different periods, giving rise to an array of colours, used in different proportions by people.

Despite this seemingly incredible variability and sometimes randomness in colour preferences, there are trends in colour preferences both regionally and over time in Northwestern North America that are very difficult to explain if the choice is only individual and highly random. Like our car example, are Indigenous people thinking the same way about bead colour choices? Certainly, the floral pattern in embroidery and beadwork, thought to have spread northwest from eastern North America, influenced a greater use of colours other than white and blue by Indigenous people. Some evidence suggests that style dictated colour preference among Indigenous groups. And, if you wanted to communicate your affiliation with a particular group, then the use of certain colours as means of communicating that identity was an option.

To conclude glass trade beads were a very important article among Indigenous people in Canada. The colours of beads people chose have significance in their everyday lives. Not just historically but even today.

On August 10th, 2023 I attended an Edmonton Elks football game. The highlight of this event wasn’t the Elks’ superb play (they lost and now have lost twenty-two consecutive games at home). The highlight was the half-time show featuring Canadian Indigenous dancers, clad in their colourful dancing regalia covered with many glass beads.

The bead colours they chose, and the meaning behind them, are often very personal, steeped in their history and cultures. I leave the last word about the importance of Indigenous beads and colour to an Indigenous voice, Anishinaabe 98 beader Malinda Joy Gray’s thoughts about the colours of beads chosen in dance regalia and the meaning behind them:

“Colors and patterns are not merely adornment, they should be intertwined with their identity and their status as a dancer with other members of the community. When an Anishinaabe artist beads regalia for themselves, they are instructed to use their spirit colors. I have been taught by Elders that if you don’t have any colors that have special meaning to you or are unsure what your spirit colors are, you must put tobacco in some water and sleep with it beside your bed. Doing so will ensure that during your dreams your ancestors will come and show you which colors should be worn. Regalia is not just for this dimension, it transcends time and waking reality. Beadwork has impacted every aspect of Indigenous culture including its spirituality.” 99

Footnotes:
  1. From “The Pyschology of Colour in Advertising.” https://www.newdesigngroup.ca/logo-graphic-design/psychology-colour-advertising/[][]
  2. From Joy Gray, Malinda. 2017. Beads: Symbols of Indigenous Cultural Resilience and Value. M.A. Thesis, The University of Toronto, Canada.[]
  3. from “Why Do We Prefer Certain Colors?” in Psychology and Neuroscience; https://psych-neuro.com/2015/03/13/why-do-we-prefer-certain-colors/[][]
  4. Madden, T. J., Hewett, K., & Roth, M. S. (2000). Managing images in different cultures: A cross-national study of colour meanings and preferences. Journal of International Marketing, 8(4), 90-107.[]
  5. This is only a theory of high correlation (i.e., most people), not an absolute theory (i.e., all people).[]
  6. from “Science Explains Why We Have Favorite Colors” by Allison Turner, 2022.[]
  7. Farrell Racette, Sherry. 2004. Sewing Ourselves Together: Clothing, Decorative Arts and the Expression of Metis and Half Breed Identity. Ph.D. Dissertation, University of Manitoba.[]
  8. https://www.autoloansolutions.ca/blog/3-good-reasons-to-spend-more-time-choosing-your-cars colou/#:~:text=3%20Good%20Reasons%20to%20Spend%20More%20Time%20Choosing,tell%20them%20to%20vamoose%21%20…%205%20Apply%20Now%21[]
  9. From “Color Symbolism & Meaning of Gray”. https://www.sensationalcolor.com/meaning-of-gray/[]
  10. Quote from Farrell Racette, Sherry. 2004. Sewing Ourselves Together: Clothing, Decorative Arts and the Expression of Metis and Half Breed Identity. Ph.D. Dissertation, University of Manitoba.[]
  11. from Bead Types at Fort Vancouver. US National Parks Service. https://www.nps.gov/articles/fovabeads.htm[]
  12. Data from Karklins, Karlis. 1983. Nottingham House: The Hudson’s Bay Company in Athabasca, 1802-1806. History and Archaeology 69. Ottawa, Parks Canada, Ottawa.[]
  13. On the colour wheel, secondary colours are located between primary colours. According to the traditional colour wheel, red and yellow make orange, red and blue make purple, and blue and yellow make green. Tertiary colours refer to the combination of primary and secondary colours due to their compound nature. Blue-green, blue-violet, red-orange, red-violet, yellow-orange, and yellow-green are colour combinations you can make from colour mixing. While we are all familiar with what primary and secondary colours resemble, we are perhaps less familiar with tertiary colours. The six tertiary colours often come with names. For example, vermilion refers to orange combined with red; magenta, red combined with purple); violet, purple combined with blue; teal, blue combined with green; chartreuse, green combined with yellow; and, amber, yellow combined with orange. I cannot think of one primary or secondary colour, and many tertiary combinations as well, that has not been applied to glass trade bead colours in the Americas.[]
  14. Kidd, Kenneth and Martha Ann Kidd. 2012. A Classification System for Glass Beads for the Use of Field Archaeologists. In BEADS: Journal of the Society of Bead Researchers. Volume 24[]
  15. Devore, Steven Leroy. 1992. Beads of the Bison Robe Trade: The Fort Union Collection. Williston, North Dakota.[]
  16. American Fur Company data from Farrell Racette, Sherry. 2004. Sewing Ourselves Together: Clothing, Decorative Arts and the Expression of Metis and Half Breed Identity. Ph.D. Dissertation, University of Manitoba.[]
  17. Steven Leroy Devore. 1992. Beads of the Bison Robe Trade: The Fort Union Collection. Williston, North Dakota.[]
  18. Wayne Davis. 1974. Time and Space Considerations for Diagnostic Northern Plains Glass Trade Bead Types. In Historical Archaeology in Northwestern North America. University of Calgary, Canada.[]
  19. https://www.nps.gov/articles/upload/Within-the-Collection-Beads.pdf[]
  20. Courtesy of https://www.nps.gov/articles/upload/Within-the-Collection-Beads.pdf []
  21. Melonie Ancheta. 2016. Colouring the Native Northwest Coast. Magazine of the Smithsonian’s National Museum of the American Indian: Volume 17, No. 1[]
  22. a mineral consisting of a phosphate of iron which occurs as a secondary mineral in ore deposits. It is colourless when fresh but becomes blue or green with oxidization[]
  23. from Melonie Ancheta. 2016. Coloring the Native Northwest Coast. Magazine of the Smithsonian’s National Museum of the American Indian: Volume 17, No.1.[]
  24. both white and black technically are considered colours and so treated here as such[]
  25. And to my knowledge has not been answered. Certainly, like many European trade goods introduced into Indigenous society, they might have affected traditional values. If blue dyes were difficult to acquire, and therefore relegated to only a few people, such as shamans and nobility, the greater accessibility to objects by others to this colour may have had a profound effect on Northwest Coast cultural traditions.[]
  26. Abel, A. H. 1939. Tabeau’s Narrative of Loisel’s Expedition to the Upper Missouri, pp.170-71. University of Oklahoma Press, Norman.[]
  27. Abel, A. H. 1939. Tabeau’s Narrative of Loisel’s Expedition to the Upper Missouri, pp.174-76. University of Oklahoma Press, Norman.[]
  28. Davis, Wayne. 1972. Glass Trade Beads of the Northern Plains – Upper Missouri Region. M.A. Thesis, Department of Archaeology, Calgary, Alberta.[]
  29. Denig, Edwin. 1930. Indian Tribes of the Upper Missouri. Edited by J. N. B. Hewitt, Bureau of American Ethnology Annual Report (1928-1929), Vol. 46: 375-628. Washington, D. C.[]
  30. Ross, Lester A. 1976. “Fort Vancouver: 1829-1860, An Historical Archaeological Investigations of the Goods Imported and manufactured by the Hudson’s Bay Company” United States Department of the Interior National Park Service and the Fort Vancouver Historic Site, USA.[]
  31. Crowell, Aron L. 1997. Archaeology and the Capitalist World System: A Study of Russian America. Plenum Press, New York.[][]
  32. Duncan, Kate C. 1989. Northern Athapaskan Art. A Beadwork Tradition. Douglas & McIntyre, Vancouver.[][][]
  33. Coues, Elliot (ed). 1965.  New Light on the Early History of the Greater Northwest:  The Manuscript Journals of Alexander Henry, Fur Trader of the Northwest Company, and of David Thompson, Official Geographer and Explorer of the Same Company. Ross and Haines, Minneapolis. pp.517.[]
  34. Thwaites, Reuben, Gold (ed.). 1904-05. Original Journals of the Lewis and Clark Expedition 1804-05. Dodd, Mead and Company, New York.[]
  35. McKenzie, Roderick. 1889. Reminiscences. InLes Bourgeois de la Compagnie du Nord-Quest, recits de voyages, lettres et rapports inedits relatifs au Nord-Quest Canadien, L. R. Masson (ed) (Quebec: A. Cote, 1889-90, pp.51.[]
  36. From Farrell Racette, p.313[]
  37. McKenzie, Roderick. 1889. Reminiscences. InLes Bourgeois de la Compagnie du Nord-Quest, recits de voyages, lettres et rapports inedits relatifs au Nord-Quest Canadien, L. R. Masson (ed) (Quebec: A. Cote, 1889-90.[]
  38. From Duncan, Kate C. 1989. Northern Athapaskan Art. A Beadwork Tradition. Douglas & McIntyre, Vancouver. pp.44.[]
  39. Farrell-Raccette, p. 217[]
  40. Raccette Farrell, p.307[]
  41. Raccette Farrell, p.[]
  42. Raccette Farrell p.316[]
  43. Raccette-Farrell, p.307[]
  44. Duncan, Kate C. 1989. Northern Athapaskan Art. A Beadwork Tradition. Douglas & McIntyre, Vancouver. p.43[]
  45. see the Nottingham House data shown earlier.[]
  46. Bundy, Barbara E., Allen P. McCartney, and Douglas W. Veltre. 2003. Glass Trade Beads from Reese Bay, Unalaska Island:  Spatial and Temporal Patterns. Arctic Anthropology 40 (1):29-47[]
  47. from Bundy, Barbara E., Allen P. McCartney, and Douglas W. Veltre.
    2003. Glass Trade Beads from Reese Bay, Unalaska Island:  Spatial and Temporal Patterns. Arctic Anthropology 40 (1):29-47[]
  48. However, at Rocky Mountain Fort, Scott Hamilton fine-screened all soil matrix to recover all small beads. His results suggest that the bead colour proportions from this fur trade post are within the range of variability of other post assemblages (where the soil was not fine-screened) and white beads do not occur in significantly greater numbers. ((Hamilton, Scott, David Burley, Luke Dalla Bona, Rick Howard, Heather Moon, and Bill Quakenbush. 1987. The End of Season Report of the 1986 Excavations at Rocky Mountain Fort, HbRf-31. Preliminary report submitted to the B.C. Heritage Trust.[]
  49. Pyszczyk, H. 2015. The Last Fort Standing. Fort Vermilion and the Peace River Fur Trade, 1798-1830. Occasional Papers of the Archaeological Society of Alberta 14. Archaeological Society of Alberta, Calgary, Alberta. Chapter 6[]
  50. For example, the NWC/HBC Fort Chipewyan was occupied from 1802 to 1872 covering the two time periods in question. More discreet temporal divisions have not been established archaeologically at this fort. Therefore the bead assemblage from this fort is a mixture of bead preference for over seventy years – a length of time too long to investigate any meaningful trends.[]
  51. Karklins, Karlis. 1992. Trade Ornament Usage Among the Native Peoples of Canada: a Source Book. Ottawa, Ont.: National Historic Parks and Sites, Parks Service.[]
  52. Karklins, Karlis. 1983. Nottingham House: The Hudson’s Bay Company in Athabasca, 1802-1806. History and Archaeology 69. Ottawa, Parks Canada, Ottawa.[]
  53. Karklins, Karlis. 1981. The Old Fort Point Site: Fort Wedderburn II? Occasional Papers in Archaeology and History 26. Ottawa, Parks Canada.[]
  54. Pyszczyk, Heinz W. 1993  A “Parchment Skin” is All: The Archaeology of the Boyer River Site, Fort Vermilion, Alberta. In The Uncovered Past:  Roots of Northern Alberta Societies, Patricia A. McCormack and R. Geoffrey Ironside (eds), pp. 33-44. Circumpolar Research Series Number 3. Canadian Circumpolar Institute, University of Alberta.[]
  55. Pyszczyk, Heinz W. 2000-131  Archaeological Investigations: Fort Vermillion I (IaQf-1) and Unknown Fur Trade Site (IaQf-2) (1998-2000 Field Seasons), Final Report, Permit 2000-131. Manuscript on file, Alberta Tourism, Parks, Recreation and Culture, Edmonton, Alberta; Pyszczyk, Heinz W. 2002-227  Archaeological Investigations:  Fort Vermilion I (IaQf – 1) and Unknown Fur Trade Site (IaQf-2). Final Report, Permit 2002-227. On File, Archaeological Survey of Alberta, Edmonton. Pyszczyk, H. 2015. The Last Fort Standing. Fort Vermilion and the Peace River Fur Trade, 1798-1830. Occasional Papers of the Archaeological Society of Alberta 14. Archaeological Society of Alberta, Calgary, Alberta.[]
  56. Catalogue only, Royal Alberta Museum, Edmonton[]
  57. Arnold, Ken. 1972. The History and Archaeology of Fort Fork (Draft). Manuscript on file, Provincial Museum of Alberta, Edmonton, Alberta[]
  58. Hamilton, Scott, David Burley, Luke Dalla Bona, Rick Howard, Heather Moon, and Bill Quakenbush. 1987.  The End of Season Report of the 1986 Excavations at Rocky Mountain Fort, HbRf-31. Preliminary report submitted to the B.C. Heritage Trust.[]
  59. Smith, Brian J. 1992. Archaeological Mitigation of Site GePa-10, Lac la Biche, Alberta for M & J Cats Ltd. ASA Permit Number 92-006. Consultant’s report on file with Alberta Culture and Community Spirit. Edmonton, Alberta.[]
  60. Forbis, R.G. 1958a. Archaeological Site Inventory Data, Borden No. EgPr-1, Peigan Post (Old Bow Fort). Site form on file with Alberta Culture and Community Spirit. Edmonton, Alberta.[]
  61. Noble, William C. 1973. The Excavation and Historical Identification of Rocky Mountain House. Canadian Historic Sites. Occasional Papers in Archaeology and History No. 6. Department of Indian Affairs and Northern Development, Ottawa.[]
  62. Steer, Donald N. and Harvey J. Rogers. 1978.  Archaeological Investigations at an Early Nineteenth Century Fur Trading Fort, Rocky Mountain House National Historic Park, 1975-77. M.S. on file, Parks Canada, Calgary.[]
  63. Kidd, Robert S. 1987. Archaeological Excavations at the Probable Site of the First Fort Edmonton or Fort Augustus I, 1795 to Early 1800s. Human History, Occasional Paper No. 3. Provincial Museum of Alberta, Edmonton.[]
  64. Nicks, Gertrude. 1969. The Archaeology of Two Hudson’s Bay Company Posts:  Buckingham House (1792-1800) and Edmonton House III (1810-1813). M.A. thesis on file, Department of Anthropology, The University of Alberta, Edmonton[][]
  65. Kidd, Robert S. 1970. Fort George and the Early Fur Trade in Alberta. Publication No.2, Provincial Museum and Archives of Alberta. Alberta Culture, Historical Resources.[]
  66. McCullough, E.J., A.J. Landals, and B.J. Kulle. 1992. Historical Resources Mitigation FjOn 1 Fort Vermillion/Paint Creek House. Permit 91-73. Consultant’s report on file with Alberta Culture and Community Spirit. Edmonton, Alberta.[]
  67. Karklins, Karlis. 2021. appendix F. The Trade Beads of Fort Riviere Tremblante. In Meyer, David. 2021. Archaeological Investigations of Fort Riviere Tremblante. Manuscript on File, Saskatchewan Heritage Center, Regina.[]
  68. Walde, Dale. 2004. Historical Resource Monitoring of a Replacement Waterline within Lots 1, 4 & 5, Block 1 Fort Vermillion, Alberta Map Sheets 84 J/5 & K/8 Final Report. Permit 2004-209. Consultant’s report on file with Alberta Tourism, Parks, Recreation and Culture. Edmonton, Alberta.[]
  69. Smith, Brian J. 1991a. Archaeological Investigations, Dunvegan, Alberta: Hudson’s Bay Company 1877 Factor’s House (GlQp-8) and St. Charles Mission Roman Catholic Church (GlQp-6), Permit 89-20. Vols. 1-3. Report on file with the Archaeological Survey of Alberta, Edmonton.[]
  70. Forsman, Michael. 1985. The Archaeology of Victoria Post 1864-1897. Archaeological Survey of Alberta Manuscript Series No. 6. Alberta Culture, Edmonton; Losey, Timothy, et. al, 1977. Archaeological Investigations: Fort Victoria, 1975[]
  71. Pyszczyk, Heinz W. n.d. Archaeological Investigations: Fort Edmonton V, 1992-1995. Manuscript report on file, Archaeological Survey of Alberta, Edmonton.[]
  72. Pickard, Rod and Heather D’Amour. 1987.  Archaeological Investigations at the National Historic Site of Jasper House. Microfiche Report Series 475. Environment Canada Parks Service, Calgary, Alberta.[]
  73. Archaeological Survey of Alberta, Edmonton.[][][]
  74. Stevenson, Marc G.
    1981. Peace Point – A Stratified Prehistoric Campsite Complex in Wood Buffalo National Park, Alberta. Research Bulletin No. 158. Parks Canada.[]
  75. Crowell, Aron L.
    1997.  Archaeology and the Capitalist World System: A Study of Russian America. Plenum Press, New York.[]
  76. Doll, Maurice,F. V., Robert S. Kidd and John P. Day. 1988. The Buffalo Lake Metis Site: A Late Nineteenth Century Settlement in the Parkland of Central Alberta. Human History Occasional Paper No. 4. Alberta Culture and Multiculturalism, Provincial Museum of Alberta.[]
  77. Crowell, Aron L. 1997.  Archaeology and the Capitalist World System: A Study of Russian America. Plenum Press, New York.[][][][]
  78. Doll, Maurice, F. V., Robert S. Kidd and John P. Day. 1988. The Buffalo Lake Metis Site: A Late Nineteenth Century Settlement in the Parkland of Central Alberta. Human History Occasional Paper No. 4. Alberta Culture and Multiculturalism, Provincial Museum of Alberta.[]
  79. Elliot, W. J. 1971. Hivernant Archaeology in the Cypress Hills. M.A. Thesis, University of Calgary.[][]
  80. Panas, Timothy
    1999. Statistical Comparison of Spode/Copeland Ceramics between Historic Metis and European Occupations in Central Alberta. Unpublished M.A. Thesis, The University of Montana.[]
  81. Brandon, John Daniel. 1989. The Artifacts and Stratigraphy of the Letendre Complex, Batoche, Saskatchewan. Unpublished M.A. Thesis, University of Saskatchewan.[]
  82. Klimko, Olga, Peggy Mkeand, Terrance Gibson. 1993. The Chesterfield House Research Project. Permit 93-047. Saskatchewan Heritage Branch, Regina.[]
  83. Heitzmann, R.J., J. Preigert, S.S. Smith. 1980. Historical Resources Inventory and Assessment Programme 1979 Fort Chipewyan III and IV, Final Report. Permit Number 79-100. Consultant’s report on file with Alberta Tourism, Parks, Recreation and Culture.[]
  84. Pyszczyk, Heinz W. 1989. The Rosebud Burial. Manuscript on File, Archaeological Survey of Alberta, Edmonton.[]
  85. Klimko, Olga and John Hodges. 1993. Last Mountain House: A Hudson’s Bay Company Outpost in the Qu’Appelle Valley. Western Heritage Services Incorporated, Saskatoon.[]
  86. Devore, Stephen
    1992.  Beads of the Bison Robe Trade:  The Fort Union Trading Post Collection. Friends of Fort Union Trading Post, Williston, North Dakota.[]
  87. Duncan, Kate. 1989, Northern Athapaskan Art. A Beadwork Tradition. p.40. Douglas & McIntyre, Vancouver.[]
  88. These limitations are the result of both a low number of archaeological site bead assemblages and often very low sample sizes.[]
  89. Much has been published in the archaeological literature on how sample size affects artifact richness (or in this instance bead colour variety) (i.e., as sample size increases, so will the number s of different bead colours, until a saturation point is reached). I have touched on the subject in my 2015 Fort Vermilion I monograph, conducting rarefaction curves to examine artifact richness between different-sized archaeological samples.[]
  90. Even when sites having small bead sample sizes are omitted (which could bias the number of bead colour varieties) the results are similar to those above.[]
  91. I conducted a two-tailed T-Test for means (unequal variances). Because of the high degree of variability and overlap in the sample, there was no statistical difference in the mean colour varieties in the two samples.[]
  92. for some reason WordPress is not allowing me to insert a number in the appropriate box for the total bead sample for Fort Vermilion II.[]
  93. However, currently, without a larger bead sample from Fort Vermilion II, I can’t rule out that unequal bead sample sizes are biasing these results.[]
  94. According to Canadian Geographic the Dakota and Cree called the Metis Flower Beadwork People. (https://indigenouspeoplesatlasofcanada.ca/article/material-culture/). There are also countless references by explorers describing Metis’ beadwork and embroidery skills[]
  95. From the Royal Alberta Facebook page here is a brief history of this firebag design: “Where do octopus bags get their names? An octopus bag has eight hanging tabs or legs, much like the animal. The octopus bag is thought to be based on Algonquin animal skin bags, also known as “many legs bags,” which had the legs and tails left on and were quill-worked or beaded. The Métis adopted this bag style when many Anishinaabe moved west to Red River, where Métis women utilized their distinct floral beadwork style. The eight-legged style of bag became popular in the 19th century in Métis and Cree communities across central Canada. This style of bag – used to carry smoking pipes, tobacco, flint, and steel to make fire (hence “fire bag”) – was carried across the continent as far west as Tlingit communities in Alaska.” Courtesy of Royal Alberta Museum: https://www.facebook.com/photo/?fbid=10154041317827815&set=this-weeks-ramwow-is-a-m%C3%A9tis-octopus-bag-from-1859-it-is-part-of-the-southesk-co[]
  96. Losey, Timothy C., et al. 1977. Archaeological Investigations: Fort Victoria, 1975. Occasional Paper No. 3. Alberta Culture, Historic Resources.[]
  97. https://newjourneys.ca/en/articles/the-story-of-the-metis-sash[]
  98. The Ojibwe, Chippewa, Odawa, Potawatomi, Algonquin, Saulteaux, Nipissing and Mississauga First Nations are Anishinaabeg. Some Oji-Cree First Nations and Métis also include themselves within this cultural-linguistic grouping[]
  99. From Joy Gray, Malinda. 2017. Beads: Symbols of Indigenous Cultural Resilience and Value. M.A. Thesis, The University of Toronto, Canada.[]

Making My Stone Maul (Part 4): Thirty Hours and Counting…

“Excuse me, which level of Hell is this?”

(A rather appropriate quote about work and effort)

(Well, I’m back. It’s time to update the progress on my maul. My fingers are still intact. But a lot stiffer, sorer, and callused. I have now spent thirty hours grinding my stone maul to make the groove. Here’s what it looked like before I started.)

The unmodified quartzite cobble I chose to make my grooved stone maul, May 2021. Quartzite is a common rock in Alberta, Canada. It is a metamorphosed sandstone that attains an incredible hardness. Seven, or over, on the Mohs hardness, scale. Equivalent to the hardness of a steel knife. Diamond has a Mohs hardness of ten. And, quartzite cobbles often come in round or oval shapes which are natural shapes for stone mauls. This cobble, before being modified, weighed 1,380 grams (1.38 kilos or 3 pounds).

A Brief Recap First

I started this project in May 2021. And I’m not half finished. I started it because I like experimental archaeology – an offshoot of archaeology involving replicating activities, or objects made in the past which are often poorly recorded and understood. As archaeologists, we gain better insight into the process and techniques required to make an object. Such as this stone maul, for example.

A granite stone maul found in Saskatchewan, Canada. A few terms to keep in mind before I continue with this blog. Each end, divided by the groove, is called a poll. The distal poll is the working end of the maul. If the maul is a three-quarter maul (where the bottom is not grooved) such as this one, then the portion not grooved becomes the bottom of the maul. The wood hafting bends around the groove and comes together at this point on the maul to form the handle. This maul was likely pecked with a hard hammer (both to shape it and make the groove); not ground, as the grooved surface is quite rough. You can peck granite, but not quartzite very well, if at all.

As I mentioned before in my previous blogs there are few historical or ethnographic accounts describing stone tool technology. Even fewer on making ground stone mauls. And still fewer yet, if any, of making them out of quartzite in western North America. I chose quartzite because: 1) it’s the hardest and most durable rock we have in Alberta, Canada; and, 2) most of our prehistoric stone mauls in Alberta are made from quartzite.

Now, why would people choose such a tough material to make their stone mauls? Why go through all that trouble if a simple stone cobble held in one’s hand would probably do the same job pounding meat, grains, or berries? 1 These are only a few of the questions I asked myself as I was making this grooved stone maul.

So, I started by trying to peck the quartzite cobble with a smaller stone cobble (also quartzite). That didn’t work very well. In fact, it didn’t work at all. It was too difficult to aim the hammer-stone precisely enough and didn’t seem to remove any material. Next, I chipped off a small quartzite flake with a sharp edge from a cobble and started sawing away on the quartzite cobble I had chosen for a maul. Below is my progress after ten hours of grinding and sawing.

One thing became immediately clear. This project was going to take a long, long time. Quartzite, on the Mohs scale of hardness, is 7.0 – 7.4. Some of the hardest rocks in the world. And, after ten hours of work, I had absolutely no doubts about that fact. Nor did my hands and fingers.

One of the stone flakes I used for sawing/grinding my stone maul for the first ten hours. Often, my finger would grind on the cobble surface as well, creating some rawness and blistering. Or getting gouged by the flake. You can see here that during the initial cutting of the cobble cortex (oxidized surface of the rock), I used a very small quartzite flake with a very thin cutting edge. The actual grinding or cutting edge surface of the flake was also very small. So, at first, progress was very slow.

Below was my progress grinding a groove on the maul. I eventually saw a groove after six hours of grinding. You can read more about my progress in my first three blogs on this website.

My quartzite stone maul through various stages, documented in hours of grinding. After four hours I was ready to abandon ship. I could barely see an incision on the cobble. And I certainly gained a new respect for our ancestors who used stone tool technology. After ten hours of work, I saw some progress. Maybe there’s hope after all in completing this stone maul before my fingers fall off. After ten hours of work, the groove is about 3.5mm deep and a maximum of 4mm wide.

My Next Twenty Hours of Grinding My Maul

I have worked on the maul for thirty hours. Below are a few photographs of what the maul looks like. I can actually say now that I’m winning the battle.

The maul after twenty hours of work (far left): groove length = 110mm; groove depth = 3.5mm; maximum groove width = 9mm. The maul after thirty hours of work (center and right): groove length = 125mm; groove depth =~5mm; maximum groove width = 11mm. The groove didn’t get much deeper (from after ten hours) but much longer and slightly wider. The amount of work invested in making the maul is measured in two ways: 1) total volume of material removed from the cobble; and, 2) total weight of material removed from the cobble. The total volume of material removed after ten hours of work: 110mm x 3.5mm x 9mm = 3,465 cubic mm; After 30 hours work: 125mm x 5mm x 11mm = ~6,875 cubic mm (the width is not uniform over the entire length of the groove, so this figure is likely less than the estimate here). The weight of the maul cobble before starting = 1,380 grams. Weight after thirty hours of grinding = 1,361 grams. I have removed a total of 19 grams of material after thirty hours of work.
A ‘rough’ sketch of three different aspects showing the position of the grinding pebble relative to the maul groove. In the first view, you are looking straight down on the maul and flake showing the flake oriented diagonally across the width of the groove. In the second view, you are looking down the length of the groove from the end with the flake positioned diagonally across the groove but also tilted towards the right wall of the groove. In the third view, you are looking at the grinding pebble from the side with its front pointing down at a shallow angle towards the bottom of the groove. Ideally, the grinding pebble is in all three positions simultaneously as strokes are taken.

Grinding Facts and Progress

In an earlier blog, I estimated that I ground the maul 67% of the time in one hour; the remainder of the time I rested and examined my work. I decided to determine how much grinding I actually did over a one-hour period by timing five hours of grinding. I tabulated the results below:

HourMinutes Grinding/Sawing% (of one hour)
14473.3
25083.3
35286.7
45490
54778
Mean Time Grinding/Sawing49.482.3
It turns out I ground the maul longer than I had originally estimated. On average I ground close to 50 minutes out of every hour. This turns out to be about 82.3%. However, I count the resting and examining the maul as part of the work process. It’s almost impossible to grind continuously for one hour. Maybe if you’re young and strong. I’m neither.

I also calculated how many strokes per minute I took by counting five sample strokes over a one minute period. Here are the results:

Sample Strokes per MinuteNumber of Strokes
1148
2138
3140
4150
5146
Mean Strokes per Minute144.4
What constitutes a stroke? I counted a stroke here as the forward motion along parts of the groove as one stroke and the backward motion as the second stroke. The two strokes don’t have the same degree of effort. The backward stroke is not nearly as powerful and effective in grinding as the forward stroke which is the power stroke. How much less effective is very difficult to measure accurately. I have no idea how much force I’m exerting on the maul with either stroke (and it would be tough, but not impossible to measure). On average I took about 144 strokes per minute while grinding. If we calculate how many strokes it takes per hour, then multiply 144 x 49.4 = 7,113.6 strokes per hour. And, if we multiply that figure by thirty hours, I have taken 213,408 strokes so far. Ouch! No wonder I hurt sometimes.

The Grinding Process, or, How to Make a Very Narrow Maul Groove Wider

Initially, for the first ten hours of grinding, I used a very small, thin quartzite flake (weighing 14 grams) to establish a thin, deep, straight cut across the width of the cobble. Occasionally I placed some wet sand in the groove to gain better grinding traction (which was also more effective in removing the skin from my fingers). But once the groove was about 4mm deep, it was time to begin to widen as well as deepen it. I thought there might be two possible ways of doing this: 1) angle the grinding flake to either side of the maul groove, so that the sides of the flake rub along the sides of the maul groove; and, 2) use a larger flake with a wider edge to widen the groove. It turns out I eventually ended up doing both.

Here’s how my grinding method progressed over the next twenty hours. I did not use any sand, because I worked in the house. After knocking off a few flakes from a small orthoquartzite pebble (weighing 108 grams as opposed to the smaller quartzite flake only weighing 14 grams) to form a cutting edge, I then retouched the cutting edge, using a hammer-stone, to blunt and widen it. I used this edge for many hours. It wore down and began to conform to the size and shape of the maul groove, fitting in nicely and thereby touching not only the bottom of the groove but also the sides. As the flake wore down, it got wider, and thereby also continued to widen the groove.

That was the first step to widening the groove. Next, I started experimenting with holding the grinding flake at certain angles. I got a lot more of the pebble grinding surface on the maul walls by doing this. During the last ten hours of grinding I made the grinding process even more complicated, but also more effective. Not only did I angle my grinding flake to one side or the other (off the vertical plane), but I oriented the flake grinding edge diagonally across the groove channel and pointed it downwards. This resulted in a three-dimensional grinding action as shown in the photographs and illustration below. This technique abraded both the sides, as well as the bottom, of the groove. The front edge of the grinding flake was always fresh as you grind it down by angling it.

I think the groove is now deep and wide enough so that I can use even a bigger grinding pebble. The extra weight of the pebble and greater grinding surface should result not only in widening the groove to about 20mm (which is my ultimate goal) and 6mm – 7mm deep, but should also be more efficient because of the added weight of the grinding pebble/stone; thus requiring less effort and time.

A photograph of me grinding away with my pet pebble. The pebble is tilted to one side, its point slightly downward and aligned diagonally across the maul groove. I found that this is a very effective way of grinding the groove and scouring both sides and bottom at once. The grinding pebble’s edges seem to catch the quartzite surface better when positioned this way. Both the maul and the grinding pebble get worn down. The front edge of the grinding pebble is snapped off. So there is always a constantly new, rough front surface that grinds the groove.
A close-up shot of my grinding pebble positioned at the angles previously described to get maximum grinding traction and removal of material. In order to widen the groove, I will now search for a new, larger, heavier, grinding pebble with a rounded grinding edge. Ideally, it should be about 20mm – 22mm wide which is the intended maximum width of my groove.

My Pet Grinding Pebble and Other Flakes I Used

One of the major challenges of hand-grinding with a pebble or flake was finding one that fit my hand with no sharp pressure points. This is very important. Blisters can form quickly if the grinding stone doesn’t fit well. Initially, the small flakes I used hurt my hands and created blisters easily because they were relatively small. And, because of their size, it was very difficult to wrap something around them to soften the grip. When I graduated to the bigger quartzite grinding pebble shown in these photographs, I taped the portion that fits in my hand. This pebble was quite comfortable and didn’t blister or cramp my hand (well, at least not as fast) as I ground the stone maul. Not only must you look for an equally hard, or harder, material for a grinding stone, but one that is comfortable if you want to save your fingers and hands.

Below are various stages, captured with photographs, of my last grinding pebble which I used for twenty hours; and the changes it went through. I resharpened it a few times to broaden the grinding edge, so it would broaden the maul groove. The pebble is not a true quartzite, but rather an orthoquartzite (which is grainier and perhaps not as hard as quartzite).

My pet grinding pebble. Made of orthoquartzite, this pebble was coarse and tough enough to do some serious grinding on my quartzite maul. This photograph shows the various stages my grinding stone edge went through. The grinding edge became broader and smoother as I cut down into the maul groove. The sides of the grinding stone also got worn and polished because of the way I held it. The polished grinding edge still managed to wear away material in the groove.

Stone Maul Balance – Where Should the Groove Go?

I never really thought much about this until recently. But what about the balance of the maul when hafted? Where should the groove be positioned on the maul?: near the center, or more towards one end of the polls? There are pros and cons for each position. If the maul groove is too much off-center its awkward balance might create problems when lifting and swinging it; and difficulty using both ends. If the maul groove is centred, how effective is it in the lift and swing? One way to find an answer is to experiment with various types of hafting. However, if the groove is centred, and is sufficiently well balanced to lift and swing, then both polls can be used for pounding if the maul is relatively symmetrical.

There was another way to find out if the position of the groove on a maul was important: examine a sample of prehistoric stone mauls and measure where the groove was placed. In the maul samples below from Alberta and Saskatchewan, Canada, most of the grooves are off-center, either towards the proximal or distal poll. In the Saskatchewan sample, of the 15 examples shown, all 14 grooves are off-center, either on the proximal (n = 11) or distal (n = 4) poll. Rarely is the groove exactly centred, although a few specimens came close. And, in Gilbert Watson’s Saskatchewan sample (see below), when the groove is off-center towards the distal poll, the proximal poll is cone-shaped and thereby lighter than the distal poll. Thousands of years and thousands of maul users can’t be wrong. For whatever reason a hafted off-center maul was preferred. Presently, I can only speculate, without further experiments, why people chose this position for the groove. It likely has to do with balance (or imbalance with the weight more towards the striking end) since those mauls with grooves nearer the distal poll generally have smaller, lighter proximal polls.

If you look closely at my maul in the above photographs, the maul groove is slightly offset towards the proximal poll.

A sample of ground stone mauls from Alberta, Canada. Note that all of the grooves on the complete specimens are off-center, mostly toward the proximal end (n = 6) of the poll as opposed to the distal end (n = 4) (however, the numbers are close and the sample is small). When the groove is closer to the distal poll then the proximal poll is almost always more cone-shaped and therefore slightly smaller and lighter (as in the last two mauls). 2
These drawings of stone axes were published by Gilbert Watson in the Saskatchewan Archaeological Newsletter, 1966. Only one of the grooves in 15 samples is centred while the remainder are off-center, most often towards the proximal poll.

A Few Closing Thoughts

“The underlying principle behind optimizing theory is that past cultures always attempted to maximize returns while minimizing the expenditure of currency….As all humans operate under finite constraints, tool designs reflect the necessity to conserve time.” (John Darwent, Simon Fraser University, Burnaby, Canada)

As I sat hour after hour grinding away on my quartzite maul, feeling the pain and stiffness in my fingers, I often wondered why people chose quartzite to make these mauls. The answer to that question may have something to do with the effort to procure raw materials, time expenditure, and the benefits of making it from such a hard material. Archaeologists have pondered the trade-off between time and effort of making an object and the benefits acquired.3 Archaeologist, John Darwent, and others suggested four possible scenarios of the cost-benefit of making an object: 1) high cost, low benefit; 2) low cost, low benefit; 3) high cost, high benefit; and, 4) low cost, high benefit. He suggests that in terms of efficiency (benefit divided by cost), the cases can be ranked, except for instances 2 and 3 which are equivalent, as follows: 4 > 3; 2 > 1.

Clearly, in terms of production time (exceedingly long) and benefit (a maul that is virtually indestructible), my quartzite maul is probably a “3”: High Cost, High Benefit. In Alberta, other materials for maul making (e.g., granite, amphibolite, basalt, sandstone, granite) exist but are less common requiring more time and effort to find them. Even though these rock types are not as hard, and therefore easier to grind, there would be less benefit, breaking more easily (as the granite maul below shows, missing part of the distal poll). Quartzite cobbles are very common in Alberta. Saskatchewan Sands and Gravels, eroding out in creek and river cuts contain naturally suitably shaped cobbles, thus not requiring any, or little shaping (and thereby reducing work and effort considerably). Once the maul is made, relatively little maintenance is required.

The arrow points to the granite maul where chunks of the distal poll broke off, probably through use. The maul was found in a cultivated field so breakage from farm equipment can’t be ruled out. However, the break surface looks sufficiently weathered suggesting it happened a long time ago.

However, is this rather economic-oriented view of maul manufacture too simplistic? Is the choice of this tough stone, and the many hours required to fashion a maul, intended for something else? Here also, archaeologists have speculated, stating that optimization theory fails to explain why so much time and effort (or ‘surplus’) goes beyond a purely ‘functional’ point when making a stone tool. As Darwent explains, “…the most optimal decision on an economic level may not be the best choice on a social level.” In other words, a simple stone maul, made from softer materials, may be just as functional as one made of quartzite, but less prestigious at a social level. The difficulty, however, becomes knowing where to draw the line between how much work and effort is ‘functional’, as opposed to what is considered ‘surplus’. And whether the ‘benefits’ outweigh the ‘cost’.

Before signing off, my other thought about western Canadian stone mauls, concerns the scarcity of evidence of their manufacture in the archaeological record. In other words, where do old stone mauls go when they die? Or do they ever die? It seems most of them are found on the surface of cultivated fields and end up in farmers’ collections. Prehistorically, they might have been highly valued and curated, because of the effort it took to make them, and were perhaps passed down from one generation to the next. As mentioned before, we rarely find them in buried archeological contexts. And, we don’t find broken bits and pieces of mauls, such as parts of the poll hammer end or groove, in the archaeological record. 4 To my knowledge, we don’t find polished pieces of stone flake used to grind and shape the groove. This lack of evidence makes this artifact a bit of an enigma. Many questions, regarding its manufacture and use still need to be answered.

My pet grinding pebble (far left) and a number of rejuvenation flakes were removed from it to widen the grinding edge (on the right). The arrows all point to the polished surfaces of the flakes and my grinding pebble that wear very smooth when grinding the groove. If this method was used prehistorically then we should find evidence of it in the archaeological record. The characteristics of grinding on pebbles or flakes are subtle and require careful examination of the archaeological materials recovered.

From this experiment, it’s more likely the quartzite mauls were made by grinding rather than pecking. Although, here I admit, after looking closely at the grooves (which seem more ‘grainy’ than my maul), in the Alberta maul sample, that that the grooves may have been pecked. Perhaps I was too hasty in dismissing this method. It’s something that I will test by pounding and pecking on a quartzite cobble for a greater length of time.

My colleagues and I want to acquire some independent evidence to either verify or refute whether quartzite mauls were ground and not pecked. If you look at a close-up photograph of the granite and my quartzite maul grooves, you will immediately note the difference in the degree of smoothness of the maul grooves. This difference in smoothness is partly due to the differences in grain size in both types of rocks, but perhaps also on how each groove was made; by grinding for quartzite and pecking for granite.

Comparison of the granite and quartzite maul grooves. The quartzite maul groove is much smoother although parts of the granite maul groove also show some polish. I wonder if it too was ground instead of pecked; perhaps both. The other issue we have to consider is how much of this polish occurred when the maul was hafted and then used with the hafted handle constantly rubbing in the groove. The two different types of polish may not be distinguishable with the naked eye but may appear different under higher magnification.

We plan to examine my quartzite maul groove under high magnification and note the type of wear marks left from grinding it with another quartzite rock. Then we will examine both the granite maul and other quartzite mauls in the Alberta museum collections, to see if similar marks are present on them. Hopefully, this little exercise will give us independent verification (or not) of whether prehistoric Indigenous peoples in western Canada used this method to fashion their stone mauls.

In closing, I estimate it will take another ten to fifteen hours of grinding to finish one-half of this maul (assuming that the use of a larger, heavier grinding stone speeds up the process). This figure, when added to my already thirty hours of grinding, puts us at the 40-45 hour mark for just one-half. Thus, it will probably take about 80 – 90 hours to make the entire groove and perhaps another ten hours to make the handle and haft it onto the maul. That brings us to around one hundred hours of work.

And I intend to finish at least one-half of the maul. So, there will likely be one more final blog on my progress. And hopefully, by then there will be results from looking at the maul grooves under high magnification for manufacturing wear marks.

However, I’m going to soak my hurting hands in some warm Cuban waters before I tackle the home stretch of this project.

Adiós

Footnotes:
  1. See the article by Kristine Fedyniak and Karen L. Giering. 2017. More than meat: Residue analysis results of mauls in Alberta. Archaeological Survey of Alberta, Occasional Paper 36, regarding what types of materials people pounded with these mauls.[]
  2. Photographs of Alberta mauls are from: Kristine Fedyniak and Karen L. Giering. 2017. More than meat: Residue analysis results of mauls in Alberta. Archaeological Survey of Alberta, Occasional Paper 36.[]
  3. see John Darwent’s M.A. thesis. 1996. The Prehistoric Use of Nephrite on the British Columbia Plateau. Simon Fraser University, Burnaby, British Columbia, Canada.[]
  4. One of my colleagues suggested that broken stone mauls were used as boiling rocks, or in sweats, virtually disintegrating, leaving no evidence behind[]

Historic Glass Beads in Canada: Searching for Trends and Meaning (Part Two)

Dedicated to the work and memory of archaeologist Wayne London Davis. One of the first among us to appreciate the beauty and value of glass trade beads.

In my first segment on beads I looked at their antiquity around the world. In this second segment, I’ll lay out some basic facts and trends about glass beads in the Canadian fur trade. If you’re interested in more details, whenever you see a super-scripted footnote number, just point your cursor at it and it will pop up on your screen. 1

A rare find discovered in 1975 while I was excavating at the Hudson’s Bay Company’s Fort Victoria (c.1863 – 1898), Alberta, Canada. The beadwork might be the remains of a dog or saddle blanket. Or some other personal item. Based on its context, it was most likely made by an Indigenous woman living in the fort. Both the color and design of the beadwork are preserved in these remains. 2
But, this example is the exception to the rule. Rarely do we find intact beadwork in the historic archaeological record. Instead we usually find thousands of beads scattered in and around buildings, cellars, trash pits, or privies. Often we have no idea who dropped or discarded them. In short, we often have little to work with when reconstructing their individual histories. 3

From James Isham, York Fort, 20 July 1739
Right Honourable Sirs
;
With submission, this we humbly beg leave to observe to your honours, according to your honours’ orders, 1738 (paragraph the 7th) the Indians dislike of particular goods, their refusal and the reason for the same….Beads large pearl, the Indians dislikes for the colour, both large and heavy, the shape not being for the use they put them to, which is to hang at their noses, ears, and to make belts etc., so being few or none traded and lying useless in the factory, according to your honours’ desire I send them home…”

Glass trade beads. Recovered from the NWC/HBC Fort Vermilion I (c.1798 – 1830), northern Alberta, Canada

Not Just Any Beads Will Do

In his letter, James Isham, in charge of the Hudson’s Bay Company’s York Factory, listed three things about glass trade beads, that, if not strictly adhered to created serious problems in trade:

Color; Size; and, Shape

If these qualities were not satisfactory to First Nations Peoples, they simply refused to trade.

In this segment I’ll examine more closely how glass beads were made, and who made them. And how seemingly trivial traits, such as bead size and shape, were important in the Indigenous world. In a third segment in this series, I’ll consider in more detail the importance of bead design and color.

As I thought about the thousands of glass beads we’ve found at the many fur trade archaeological sites in western Canada, I wondered: What can we learn not only about how glass trade beads were made, but also their role and importance for the Indigenous People who acquired them?

However the task is difficult and fraught with obstacles. Archaeologically, the Fort Victoria beadwork example is rare. Unique almost. Glass beads don’t come in nice arranged designs. Often we don’t know who sewed those designs, or who purchased and used glass beads. 4

Slightly less spectacular than the Fort Victoria beads, is this string of glass trade beads exposed while excavating one of the Fort Vermilion I dwellings in 2016. Again, a rather unique find showing not only the types of beads Indigenous women living at the forts used, but also the color combinations they strung them together.

So let me lead you through this minefield of glass bead research. But first, we’ll briefly review how glass beads were made. And who made them. 5

Glass Trade Beads in the Americas: Who Made Them?

“Early demands for metaphorical counterparts of rare sacred materials like marine shell and natural crystals transformed with time to large-scale requests for beads of particular sizes, shapes, and colors for ornamentation of bodies and clothing. In all cases, American Indian worldviews determined selection, acquisition, and use of glass beads.” 6

It’s one thing to claim that Indigenous worldviews dictated bead selection. It is altogether another to figure out what they were. Or, where in a glass bead’s traits (e.g., shape, design, size and color) and patterning those worldviews resided. Especially when we consider that Indigenous people didn’t even make them. What bead types and quantities did Indigenous Peoples in Canada select that aligned with their beliefs and identities?

Early European Bead Makers

The majority of glass beads that entered the Americas, between c.1500 – 1900, were made in the Italian glass works in Venice/Murano. By the 1200s, a guild of glass makers began to make some of the best glassware in the world, including glass beads. By the 1500s Venice monopolized the glass bead industry, producing large numbers of beads in a variety of shapes, colors and sizes. The various factories were highly competitive, constantly upgrading their techniques to improve their product.

A modern glass factory in Murano. According to one source 7 glass making in Murano was a serious business: “We visited the Signoretti factory (http://www.signoretti.it/) and were able to observe in one of their 10 studio areas where three guys (the master and two apprentices worked) were working to make an amber-colored chandelier. The apprenticeship period is 15 years and while there are no laws about it, glass makers are only men…In the past, the glass masters were required to live on the island of Murano and if they were caught having shared any secrets of the factory they worked in, their tongue and one hand would be cut off in punishment.”

“About 1764 twenty-two furnaces were employed in that industry, [Murano, Italy] with a production of about 44,000 lbs. [beads] per week, and one house at Liverpool about this period bought beads to the value of 30,000 ducats annually. It may be readily conceived that a vast variety of patterns were produced. A tarriff drawn up in 1800 contains an enumeration of 562 species, and a ‘grandissimo’ number of sub-species of beads. The manufacture continues to be one of great importance.” 8

Venetian glass trade bead sample cards, 1898. The different types and varieties of glass trade beads was staggering. Many of the types and varieties seen in these sample cards appear in North America, including our Canadian fur trade and Indigenous archaeological sites. As you continue to read you will recognize some of these bead types recovered from the archaeological record. 9

Venice/Murano ruled the glass bead industry. However, according to Canadian bead expert, Karlis Karklins:

“Although Venice/Murano and Bohemia produced the bulk of the glass beads that were exported to the New World, Holland, Germany, France, England, Spain, Russia, China, and likely some other nations also contributed their share (Kidd 1979; Liu 1975a). Unfortunately, there is no routine method for determining the country of origin for any given bead type.” 10

So, we’ve hit our first snag when researching historic glass beads: determining their origins of manufacture. According to Karklins, even with mass spectometry (to ascertain the chemical composition of beads), it’s still exceedingly difficult to pinpoint a bead’s origins. What is often lacking are comparative bead samples from the European sources where they were made.

Fortunately, by using documentary records and bead collections, Venice’s dominance of the the bead industry has been generally validated. But occasionally the often vague North American documentary records leave some doubt as to origins and manufacturer. And, whether only Europeans made glass trade beads.

Glass Bead Manufacturing Techniques

European glass bead making techniques were complex. They evolved and changed over time. In order of their introduction, the four most common methods (which had derivatives or are used together) are: 11

  1. Wound Glass Beads – Although still used today, Venetians made glass beads individually by winding a molten blob of glass around an iron rod or mandrel by the end of 1200 A.D. They made beads of one (monochrome) or more colors (polychrome) by adding cobalt (blue), copper (green), tin (milky white), or gold (red) to the mixture. Or the bead could be decorated with a design pressed onto it or inlaid in the soft glass. As the demand for glass beads increased during the late 1400s this method could not keep up because it was too slow; each bead was hand-made.
Examples of mandrel or wound round monochrome glass beads (center and right) from the Hudson’s Bay Company’s Fort Edmonton (c.1830 – 1915), Alberta, Canada. Wound beads generally have visible circular swirl lines aligned around the center hole. Air bubbles trapped in the glass are round. The white bead on the left (lacking the visible swirl marks), with embossed floral decoration on it, may have been made by glass forced into a mold with the floral design on it.

Using the Canadian glass bead classification chart produced by Kenneth E. Kidd and Martha Ann Kidd (and later updated by Karlis Karklins), these are the basic wound glass bead types found in Canada. The type list is incomplete. Other bead types will be added as more archaeological sites are excavated. The bead types are organized according to: 1) method of manufacture; 2) type of decoration; 3) shape; 4) color; and, 5) size.

Master list of wound glass trade bead types in Canada. The list was developed by Kenneth and Martha Kidd in the 1970s. It has been modified by Karlis Karklins and continually added to as we find more glass bead types at our Canadian archaeological sites. In this diagram the ‘W’ stands for ‘Wound glass beads’; ‘I’ for Type ; and, ‘a, b, c’ for variety (e.g., tubular, round, oval). Courtesy of Kenneth and Martha Kidd. 12

2. Blown Glass Beads – Also a very early method (but used into the 19th century), a glob of molten glass was shaped by blowing it through a glass tube. There was also a mold blowing method. First, you blow a small bubble at the end of a glass tube which was quickly inserted into a two-piece mold. Additional air was then blown in so that the glass bubble filled the cavity. A more complicated process involved placing a glass tube in a two-piece mold with up to 24 connected cavities. This method could produce beads with very complex designs. You could then produce a row of beads or break apart the segments to form individual beads.

This beautiful glass bead was made by blowing molten glass into a mold. This technique was time-consuming but capable of producing some extraordinary ornate beads. Typically these types of beads make up a very small percentage in fur trade assemblages. 13
Basic blown glass bead types found at Canadian archaeological sites. Courtesy of Karlis Karklins. 14

3. Drawn Glass Beads – By the end of c.1400 A.D. the Venetians made glass beads from long tubes of drawn glass (initially thought to be an Egyptian method). A master glass maker first formed a cylinder from a glob of molten glass. Then his assistant took the end of the rod and pulled it down a long corridor before the glass cooled, producing a long drawn glass tube. The length of the tube and the amount of glass determined the size of the beads. Once the tubes cooled, they were cut into three foot lengths. Later, smaller lengths were cut into beads and then smoothed and polished. This method, still used today, met the demand for large quantities of beads because it was much faster.

Drawn glass beads with diagram of drawn method. White, opaque, monochrome glass bead (left, photograph courtesy of Fort Vancouver Museum bead collection). Polychrome glass bead on the right found by the author at an unidentified archaeological site just south of Fort Vermilion I (c.1798 – 1830) northern Alberta, Canada. Diagram on the right showing how molten glass was drawn to form a long tube (from Kidd and Kidd). 15
Master list of drawn glass bead types found at Canadian archaeological sites. Courtesy of Kenneth and Martha Kidd. The one above found by the author is of the Ib type. 12

4. Pressed/Molded Glass Beads – To make a molded glass bead the end of a glass rod was heated until it melted. A piece was then pinched off the rod and pressed in a tong-like two-piece mold. As the glass was compressed, any excess was forced out at the seam. A moveable pin (or pins, depending on how many holes were desired) pierced the glass and formed the perforation. In a second method, two pieces of viscid glass, one in either half of a two-piece mold, were pressed together to fuse them. Glass beads with complex colored patterns were made by this method. Some faceted mold pressed beads have mold seams that zig zag around the middle, following the edges of the central facets.

Example of mold pressed glass beads from Fort Vancouver, Washington on the left (Photograph courtesy of Fort Vancouver Museum bead collection). Mold pressed glass beads from the HBC Fort Edmonton V (c.1830 – 1915) site on the right. In this method when making the hole, the outside diameter of the perforation becomes larger than the inside.
Master list of pressed, molded glass bead types from Canadian archaeological sites. Courtesy of Karlis Karklins. 14

In Bohemia the glass bead industry had started by the 16th century. But during the Industrial Revolution in the 19th century machines were developed to mass-produce glass beads. These mold-pressed beads often had complex shapes. And by making use of patterned canes, or the glass rods fed into the machine, the resulting beads could be elaborately coloured, giving them a slightly random appearance, even if the shape was identical. Although mass-produced, and sold around the world, Bohemian glass bead making was a cottage industry that soon began to rival Murano’s bead industry.

Example of a Czech mold pressed beads. Molded beads, often similar in appearance, were made by different methods. Careful study, or consultation with an expert (of which there are few) is often required to tell them apart. Even then it is difficult. 16

Czech glass beads manufacturers were very aggressive businessmen. They sent out sample men who traveled worldwide (Africa, Japan and Tibet, and possibly the Americas) to speak with Czech glass bead wholesale suppliers to determine what beads styles would sell best in each market. They then returned to Czechoslovakia and advised on specific bead designs for sale to these markets. This proactive approach was highly successful, increasing the sales and demand for Czech glass beads worldwide.

North American Indigenous Glass Bead Making

When we think of the origins of North American glass beads, Italy, Bohemia, and Holland immediately come to mind. Wayne Davis, however, thought otherwise. His research suggested that Indigenous People occasionally also made glass beads. 17 Although probably a rare occurrence (and, to my knowledge, never documented in Canada), the Arikara, Mandan, Hidatsa, Cheyenne, and Snake First Nations in the USA made glass beads. How they did this is both fascinating and somewhat mysterious.

I’ll paraphrase one such historic Indigenous bead making process. For the complete quote, refer to this footnote: 18

  • Glass bottles, or glass beads were pounded fine and the powder thoroughly washed;
  • A platter was placed at the mouth of a three gallon ‘earthen pot’ (with a hole at edge to watch the beads);
  • A number of little rolled clay sticks the size of the bead hole were made and fired;
  • Small balls of clay were made for pedestals for the beads;
  • The pounded glass was heated and formed into an oblong shape and wound around the clay stick;
  • A hole was made in the center of each pedestal and the rolled glass bead and stick inserted into it.

“Then the platter is put in the coals and the pot is inverted over it; dry wood is placed about the whole and burnt….When the beads are whitish red and grow pointed, they are taken off. The clay center is picked out with an awl.”

The pot (presumably made from clay) probably served as a simple kiln increasing temperatures high enough to melt glass. Because even a large campfire can’t reach those temperatures. 19

Ethnologist, George Grinnell recounted another story of Cheyenne glass bead making. His description also suggests that they made glass beads and charms by melting sand. 20

Also, according to ethnographer/painter George Catlin, in 1847, the Mandan highly valued these Indigenous-made glass beads:

“…the extraordinary art of manufacturing a very beautiful and lasting kind of blue glass beads, which they wear on their necks in great quantities and decidedly value above all others that are brought among them by the fur traders.” 21

These few examples of Indigenous bead making bring up more questions than answers. How widely spread was this practice? Did some Indigenous groups truly understand how to make glass from ‘quartz sand’ as Grinnell’s observations suggests? It takes high temperatures (higher than campfires) to melt quartz without adding a flux. Currently, without doing more research, we shouldn’t discount this possibility.

If so, where’s the proof? What makes Wayne Davis’s work so important, were his searches of the American bead collections for that proof. And he may have found it. What could be Indigenous-made glass beads are present in the Fort Leavenworth collections (and others as well). Those beads have slightly different characteristics than the European-made beads.

These two rows of glass beads were found at the Leavenworth historic Arikara archaeological site (c1803 – 1832). The beads are more irregularly shaped and the colors are not as well defined and not as bright as European glass beads. The glass has a grainy texture.
These glass trade beads are from the Hudson’s Bay Company Fort Vancouver (c.1829 – 1860), Washington State, USA. The glass, like the Leavenworth Indigenous glass beads, is coarser; almost as though it were only partially melted. The coloration, which also is not as well defined as most European beads, is similar to the Leavenworth Indigenous made glass beads. Were they made locally by Indigenous People? Or, are they truly European-manufactured? I read Lester Ross’s original site report and could find nothing suggesting he believed these beads to be somewhat different from European glass beads. 22

Why would Indigenous People even make glass beads? By the early 19th century, glass beads, in a bewildering assortment of shapes and colors, were already available across North America. Was it important to add that personal touch to glass beads? If these Indigenous-made beads were passed down through generations, they certainly would have maintained a stronger connection to one’s past, one’s people, than a European glass trade bead.

Historic Glass Beads in Western Canada

With the exception of porcupine quill adornment, painting (and historically silk thread embroidery, and tufting), the glass bead’s diversity (found in its shape, size and color) allowing considerable artistic license, was almost unequaled by any other North American prehistoric traditional artistic medium.

By the end of the 17th century, when glass beads first began to appear in the interior of western Canada, there was already a considerable array of colors, sizes and types to choose from. Drawn, wound and blown (in that order based on quantities) glass beads were either traded or gifted to the interior Indigenous groups.

Amount of glass trade beads traded to western Canadian inland First Nations People between the early and late 1700s. Considering the minuscule weight of each bead, these figures would have numbered in the millions. And they only reflect those beads traded and not those also gifted before formal trade even began. The reduction of glass beads traded from York Factory by the 1750s and 1770s marks the inland incursions of the French, and then independent traders from Montreal cutting into the HBC’s domination of the inland Western Canadian trade. 23
Once fur trade posts were established further in the interior of western Canada, the Companies kept stores of glass trade beads for both trade and gifts. At Peter Fidler’s Nottingham House (c.1802 – 1806) on Lake Athabasca, pre-trading ceremonies dictated gifts be bestowed on potential Indigenous trading parties. Especially during the highly competitive period between the Hudson’s Bay Company and Canadians (North West and XY Companies). The above figures were taken from the post’s trading inventory lists. These records give us a brief glimpse into the importance and purchase of glass beads in the interior of Western Canada. But they rarely tell us what bead types First Nations preferred. 24

Encountering Problems When Researching Glass Trade Beads

In the following sections I focus primarily on glass trade beads present either in the documentary or archaeological records. Each type of record has limits as to what we can accomplish in the reconstruction of Indigenous glass bead histories. Those limitations are: 1) context; 2) clarity; and, 3) completeness.

Context

Context refers to the nature of the document or archaeological record that beads are found in. For example, sometimes glass beads are listed in fort inventories and personal debt lists. Those records document what company employees bought at the inland forts (potentially providing valuable information on Indigenous local and individual glass bead preferences and consumption in time and space). But often records are missing, descriptions vague or inconsistent. Context of beads in the archaeological record is equally problematic. Often we only know the date and place the beads were purchased and used; and less about the individuals who purchased them. 25

An example of Documentary Context and Clarity: Hudson’s Bay Company inventory of goods in Canada’s Peace River District, Alberta, Canada, 1825. The description of beads in this list leaves much to be desired. Some descriptions are vague (i.e., ‘Agats’?). It is virtually impossible to match these documentary descriptions with certain glass bead types (i.e., China flowered com.?) in the archaeological record. And quantities of beads are often also vague (bundle?, lb.?). These factors make reconstructing bead histories difficult with available documentary evidence. Of particular interest however, in this list are the wampum beads. These small shell beads are of eastern North American origin but were traded or purchased by Company employees and Indigenous People in western Canada. The authenticity of their presence in the west is born out archaeologically. We occasionally find wampum beads at our western fort sites. 26
Clarity

Clarity refers to the accuracy of identification of historic fur trade glass beads. Often in the documentary record it is difficult to match descriptions with actual glass beads types (because of inconsistent, vague descriptions as the above record shows). When we find glass beads in the archaeological record, the method of their manufacture is discernible. However, specific date of manufacture and length of use of certain bead types is not. It requires vast amounts of archaeological information from a long time period and geographical area reconstruct these dates of use.

An example of Documentary Context and Clarity: A personal debt list of goods acquired by Hudson’s Bay Company trader, Hugh Faries in 1825, Peace River District, northern Alberta, Canada. Of note are the beads he bought. Based on these descriptions and quantities we have no idea what some of these beads are or how many were bought. If the descriptions were better we would be perhaps be able to reconstruct what types of beads Hugh Faries’ Indigenous wife preferred, allowing us to compare beads acquired by different families. Unfortunately, this is virtually impossible to do with these types of records. Thus, except in rare instances, even the simplest descriptions of individual family bead acquisitions are not possible. 26
Completeness

Often the available fur trade documentary and archaeological evidence is incomplete. Many of the fur trade Company bead records were lost. Of the hundreds of fur trade sites constructed few have been investigated archaeologically. Of those investigated, most sites are only sampled; and, some of those samples are poor.

Example of a
Example of Archaeological Completeness: Glass trade beads from the HBC Fort Edmonton V. The beads on the left are large wound beads known as ‘Pigeon Eggs’. The glass beads on the right are drawn monochrome (IIa) and polychrome (IIb) types. During our investigations at this fort, occupied for over seventy years, yielding over 50,000 artifacts, we recovered 112 beads. Not only is the bead sample small, but there is something wrong here. With this large a sample of artifacts, we should have recovered thousands of beads.

And finally, there are issues with the recovery of glass trade beads archaeologically. Beads are amongst the smallest artifacts found, often being less than 2mm in size. They fall through our screens or are almost invisible when we excavate.

Example of Archaeological Context, Clarity and Completeness: An 1875 rendition of the Hudson’s Bay Company Fort Dunvegan, Peace River, northern Alberta, Canada. This fort was occupied from 1805 – 1878. First by the North West Company (1805 – 1821). And later by the Hudson’s Bay Company. Even though the various dwellings of company employees are well-defined, glass beads found in this context are problematic: 1) the fort was occupied by two different fur trade companies; 2) over time each dwelling would have been occupied by more than one family, perhaps of different ethnic backgrounds; and, 3) we have a poor sample from this fort added to the fact that it was also plowed, mixing up the archaeological materials. The bead assemblages recovered from this fort, presently only allow us to talk about glass trade beads in broad terms. We know their date and geographic area of use. And, that Indigenous women likely purchased them. But, very little else. 27
Example of Completeness: These images of pressed faceted glass trade beads recovered from Fort Vancouver, Washington, USA (as well as small beads from other forts) indicate that while most beads are small, some, such as the seed bead on the right, are almost microscopic in size. Recovery of these beads is problematic and is uneven in archaeological excavations. Uneven recovery leads to biased samples making the results of quantitative comparisons difficult.

A Few Trends in Western Canadian Glass Bead Assemblages

Enough bad news. Now that we recognize the limitations of the historic bead evidence, what sort of information can we garner about historic glass beads, and the people who purchased them, in these records?

Over the years we have recovered a considerable variety of glass trade beads from excavated fur trade forts in Canada. In the west we now have enough information to assemble a basic list of the glass bead types and varieties recovered from these forts. We can also begin to establish date ranges for their use, by applying archaeological seriation. 28

Hypothetical examples of contextual (upper) and frequency (lower) seriation. In the former method, only the date ranges of a particular artifact style are noted. In the latter method both the date ranges and frequency of occurrence within that range are noted. Many artifacts, including our automobile styles, or your eyeglass frame styles, have a range of use and also follow a curve of popularity. Once on the market a certain artifact type or style continually gains in popularity, reaching a peak, and then declines as other new styles are introduced.
Major Types of Glass Beads

In Table 1 (below) I have listed the major glass bead types (and when available, bead varieties) found at a number of western Canadian fur trade sites. 29 From this list, I have summarized the major bead types and what they looked like, using the Kidd and Kidd bead classification scheme (see the visual images below).

Table 1. Major Glass Trade Bead Types.

FortOccupation DateCompanyBead Types (Kidd and Kidd Classification System)
George1792 -1800NWCIa, IIa, IIb, IIg, Iva, WIb, WIc, WI, WIIIb, WIIId, WIII(oval/leaf, floral)
George, Plantation1800 – ????Ia, IIa, Wic, WIIIc* (oval/inlay lines)
Rocky Mountain House1799 – 1834HBCIa, IIa, WIb, WIc, WIIe
Rocky Mountain House1799 – 1821NWCIa4, Ia5, Ia15, Ia19, Ia*, IIa12, IIa14, IIa56, IIa59, IIa*, Iif*, IIIa3, IIIa*, IVa6, WIb*, WIc1, WIc3, WIc*, WIIIb(oval/leaf, floral)*
Edmonton/Augustus I1795 – 1800NWC/HBCIa, Ivb
Rivière Tremblante (Saskatchewan)1791 – 1798NWCIa2, Ia4, Ia7, Ia16, Ia19, Ia*(a), Ia*(b), Ia*(c), Ia*(d), Ib*(a). Row 3: IIa7, IIa12, IIa14, IIa17, IIa47, IIa56, IIa59, IIa*(a), IIa*(b), IIa*(c), IIa*(d), IIa*(e), IIa*(f), IIa*(g), IIb*(a), IIf*(a). Row 4: IIIa1, IIIa3, IIIa4, IVa6, WIb1, WIc3, WIc*(f), WIIIb*(b), WIIIb*(c), WIIIb*(f), WIIIb*(g), WIII(oval/leaf, floral)
Victoria1864 – 1898HBCIc13, If3, If, Ia18, Ia20, Ic(facetted), If9facetted), IIa7, IIa8, IIa13, IIa41, IVa6, Iva9, Iva18, WIb2, WIb7, WIb11, WIb16, Wic8, WIIc(facetted), WIIIb, IIa2, IIa3, IIa12, IIa16, IIa23, IIa27, IIa28, IIa36, IIa37, IIa40, IIa41, IIa47, IIb68, IVa6, IVa7, IVa9, WIb8, WIb11, WIIIa1  
Edmonton/Augustus III1810 – 1813NWC/HBCIa, IIa, Ib, WIb, IV?
Edmonton/Augustus II/IV1813 – 1830NWC/HBC 
Edmonton V1830 – 1915HBCIa4, Ic4, Ic10, IIa4, IIa6, IIa13, IIa17, IIa31, IIa56, IIb18, IIf1, IIf2, IIIf, WIc1, WIc12
Buckingham House1792 – 1800HBCIa, Ib, IIa, IIIm?, IIIk?, WIII(oval/leaf, floral), WIIIa
Last Mountain House (Saskatchewan)1869 – 1872HBCIc, IIa, Iva, WIb, WIc, MPIIa
Lac La Biche1799????IIa, IIIa, WIc
    
Nottingham House1802 – 1806HBCIa4, Ia19, Ia(not in Kidd), IIa2, IIa12, IIa14, IIa47, IIa56, IIa*, IIb, IIf, Iva6, IIIa3, WIb, WIb*, WIc1, WIc*, WIIe
Wedderburn1815 – 1817HBCIIa12, IIa14, IIa59; IIa
Chipewyan1803 – c.1900NWC/HBCIc13, IIa2, IIa11, IIa13, IIa14, IIa28, IIa34, IIa37, IIa40, IIa41, IIa43, IIa56, IIa58, IIf2, IVa3, WIb10, WIc1, WId2, WId3, WIc16, WIc11, WIIba, WIb15, WIb7, WIb2
Vermilion II1830 – c.1930HBC1a, IIa, Iva
Boyer’s Fort (1988 investigations only) 1788- 1792NWCIa, IIa
Vermilion I1798 – 1830NWC/HBCIa, IIa, WIc, Ib10, IIb, If, WIb, WIc, WIIIb, WIII(oval/leaf, floral)
Dunvegan I1805 – 1878NWC/HBCIf5, IIa6, IIa13, IIa18, WIc1, WIc11
Dunvegan II1878 – ??HBCIIa2, IIa37, IIa39, WIb11, WIb12
Rocky Mountain Fort (British Columbia)1794 – 1805NWCIa, IIa, WIb, WIc, WIIc, WIIIb, WIII (oval, floral)
Wegg’s House (Manitoba)1795 – 1796HBCIa, Ib, WIb, WIc, WIc1
Fort Union (North Dakota, USA)1829 – 1865American Fur Trade CompanyIa, IIa, Ic, IIIc, IVa, IIbb, IIh, Ibb, IVb, WId, WIb, WIe, WIc, WIIIa, WIIIb, WIIId, WIIIh, MPIIa, WMIa, WMIIb, WMIIc, BIf, BIg, Bia, WIII(oval/leaf, floral)
NWC – North West Company; HBC – Hudson’s Bay Company; ?? – Unknown; * – new bead types.

(This table is a work in progress. There are still some historic sites missing. Reports on others have yet to be written. Not all beads were identified to specific variety; this will require more detailed re-examination of the original assemblages).

Thus far we have identified 36 major glass bead types from these western Canadian fur trade posts (and one American post), dated between c.1788 – 1935. They represent the four major bead manufacturing methods (wound, drawn, mold/pressed, and blown). 30 The most popular beads, in terms of quantity, are drawn glass beads which make up more than 95% in most fur trade glass bead assemblages. And the majority of drawn beads are very small (<3mm in diameter). These small beads become increasingly popular through time.

Examples of wound glass trade bead types found in the western Canadian fur trade post archaeological assemblages. A type refers to the label on the left side of each row of beads (e.g., WIIIa, WIc). The additional numbers below each bead (e.g., WIIe1, WIIIc1) refer to varieties based on different shapes, sizes or colors. Not all the varieties shown here have been found at the fur trade forts. But at least one or more variety in each of the major types has been found. Also, each of the fort assemblages are samples, and, with few exceptions, do not represent the total number of glass beads types potentially present at these sites. Therefore, both the glass bead types and varieties could change with additional sampling, or excavation of fur trade sites not yet excavated. 31
Examples of major types of drawn or tubular glass beads found at western Canadian fur trade posts. This is the most common bead type present in fur trade assemblages. And the most common drawn beads are the tiny ‘seed beads’, usually of the IIa variety above and less than 2mm in diameter. These beads, also referred to as embroidery beads, gained popularity throughout the fur trade as beads were used increasingly more for creating large patterns on garments, instead of just necklaces, earrings, or strung on leather fringe. Among Great Plains Indigenous groups, for example, “…it is probable that very few embroidering beads were used by the Blackfeet before the American Fur Company opened its trade with them in 1831.” One of the benefits of having archaeological samples of these bead types from forts spanning a long time period, allows us to document when various Indigenous groups first adopted them, and when they reached their popularity in various regions in North America 32
Dating Glass Beads

We cannot determine, from the archaeological record, when beads were first manufactured, or ceased to be manufactured. But, we can at least get some idea of their dates of use. And, in a few cases, where our samples are robust, document their relative popularity through time. Then, with this knowledge, we can date archaeological sites or bead assemblages with unknown dates.

Some glass beads are more time-specific than others. For example, if we only look at their presence/absence (contextual seriation) the drawn, round (type ‘IIa’) beads occur at nearly every fur trade site resulting in a time range of use between 1788 – c.1872 (and likely much longer). Others such as the wound, oval, monochrome (type WIc) bead varieties have a slightly narrower range of use, based on their presence or absence at fur trade archaeological sites (c.1791 – 1869).

This figure shows fur trade sites which contained wound, oval, monochrome WIc glass bead types. The date range of occupation for each fur trade site having this bead type is plotted. Based on this evidence, the earliest known use of this bead type is based on the earliest dated site it was found at. The latest known date of use is based on the beginning of the latest dated site the bead type occurred at. Using only a presence/absence measure (or contextual seriation) it would be difficult to date sites of unknown age accurately with only this bead type (because the time range is so wide). Note also that this wound bead type is one of the earliest present at western Canadian fur trade sites. It occurs at the major fur trade company sites, including the American Fur Trade Company in the USA.

Examination of the range of use of the more elaborate wound IIIb(2) (leaf/floral oval beads) variety indicates they were only used between 1791 – 1829:

Date range of wound, oval glass beads with leaf/floral design (WIIIb(2) is between 1791 -1829, based on their presence at six western Canadian and one American fur trade post. Also, these beads, are mostly associated with the North West Company (NWC). According to some bead experts 33 this might be the elusive ‘China flowered‘ bead listed in the 1825 Peace River men’s debt lists. The beads are white, resembling porcelain or china, thereby getting their name. And this bead type (which comes in numerous designs and colors) is the one of the few beads with a floral design on it. Although glass beads were imported from China, this specimen was likely made in Venice (see the Venetian sample bead cards). Unfortunately, many of the names of glass beads in the fur trade records cannot be accurately matched with those found in the archaeological record because of either poor or inconsistent documentation.
Popular Glass Beads – A Matter of Fashion?

From Joseph Isbister, Albany Fort, 24 August 1740:
“The beads that were indented for were a different sort from those remaining which go off at another time, the Indians being very much given to change their fancies.”

Joseph Isbister’s remarks brings up a word, about Indigenous People changing styles of beads, which we all are familiar:

FASHION!

Archaeological contextual seriation suggests that some glass bead types span a certain range of time. And then disappear being replaced by other bead types or styles. Why did this happen?

Ethnologist, Judy Thompson, suggests that Indigenous art (including beading) acts like fashion. Artistic trends and styles, “…came into vogue and were replaced with new ideas and techniques. Thompson challenged the old ideas of culturally pristine, static, unchanging tribal styles, subsequently polluted by outside influence. She identified a vigorous aesthetic climate….a Kroeberian analysis of artistic climax and decline.” 34

Glass trade beads and dentalium from NWC/HBC Fort Vermilion I (c.1798 – 1830). Even at a fur trade site occupied only a little over thirty years, we see a variety of bead types, which were used in combination or replaced earlier styles. Dentalium was highly prized by Indigenous Peoples, even with the introduction of glass beads. But tastes changed as different kinds of beads were introduced for trade.

Is this what our glass trade beads are doing? Are they simply objects of fashion for Indigenous People purchasing them? Are they going through cycles of ‘climax and decline‘, much like many of our styles today? To further determine whether fur trade glass beads are reacting this way, we need to examine some of them in more detail using frequency seriation where possible. 35

To determine the popularity of a specific glass bead type or variety, we need to look at that bead’s proportional frequency through time (and space, if possible). To clarify what I mean, I will use only a few glass bead examples here.

With the available fur trade assemblages, I have calculated the relative percentages for wound, oval, monochrome (WIc), wound, oval floral/leaf (WIIIb), and wound, round, ‘Kitty Fisher’s Eyes’ (WIIIb, also known as ‘skunk beads’) bead types. These relative percentages are then plotted to time period:

This figure shows the relative percent of three major wound bead types (WIc, WIIIb KFE, and WIIIb (leaf/foral) plotted to time period using the western fur trade fort bead assemblages. Relative percent was computed by dividing the total number of each bead type by the total number of wound (WI) beads in each fort assemblage spanning a time period of c. 1750 – 1881. 36 The graph shows an increase and then decline in the relative percent of each of these bead types. Unfortunately the sample of fur trade sites is small, so the results are currently only a crude approximation. What these results show however, is that each glass bead type might be following a curve (of gradual increase, peeking in popularity at the turn of the 19th century and then declining over time). There are a few things noteworthy about this graph: 1) The differences in the relative percent of each bead type (once we have more archaeological bead assemblages to work with) through time make it possible to date assemblages of unknown dates; and, 2) if the this type of curve (which comes in many shapes) holds up with a larger sample, then these bead types follow a typical ‘fashion’ curve: after its initial manufacture each bead style gains in popularity, finally reaching a peak in popularity and then gradually declines in popularity until no longer used. I call this a fashion frequency curve which describes quantitatively how fashions/trends (whether in clothing, automobiles, or eyeglasses) act. Fashion frequency curves come in many shapes depending on how frequently the object is consumed (e.g., rapid acceptance and decline, resulting in a very steep curve; to gradual acceptance reaching a peak and then a gradual decline resulting in a more gradual curve; and everything in between these two curves).

So, it seems that different bead styles, are not so much an indicator of static cultural traditions and identity, as they are about individual affiliation or differentiation. And a constant need to acquire new bead types as they become available. But each of these bead types could also be expressing group identity if we examine their use among specific Indigenous groups. 37 Also, it is currently unknown how much of this change in glass bead styles was the product of choice among Indigenous People, as opposed to the manufacturer dictating styles, constantly coming up with new ones to promote trade. It’s likely a little of both but very difficult to accurately document. But, there is a lot of circumstantial evidence suggesting that Indigenous groups dictated what type of beads they wanted. And they sought new styles as a means of status and distinction from their peers. 38

“Unable to provide the Indigenous men with their request, they counter offered with a “watch, handkerchief, a bunch of red beads, and a dollar….which was refused. Instead, the Indigenous men wanted beads they described as “tiaco-mo-shack” described as blue “chief’s beads” (Dubin 2009, 276); both sides of the trade were thus left empty-handed.” 39

Combining the New and Old Traditions

More traditional methods of adornment were not immediately abandoned and quite often simply combined with glass bead adornment.

Sketch of a Inuit brow band collected at Repulse Bay by Captain Charles F.
Hall in the early 1860s. The band was made from seal or caribou skin. It has a row of
suspended seal teeth beads. Only the eleven central teeth have strings of alternate light and dark beads. An example of integrating new glass trade beads with traditional beading materials. What alludes us most in many of these historic examples is meaning. Was there social or spiritual meaning to using seals teeth, and only using strung beads of the central eleven strings? Or the colors of the beads used? Probably. Unfortunately traders or explorers rarely collected this information. Courtesy of Karlis Karklins. 40

Based on historic documents and historic Indigenous artifacts, in western Canada Indigenous People retained their traditional bead forms (e.g., use of dentalium, elk canines, etc.) long after the introduction of the glass bead. This fact is born out archaeologically. For example, at the early period western forts, shell and bone traditional bead artifacts are present. 41 It is unclear whether these numbers represent changing Indigenous traditions and tastes, or growing unavailability of traditional beads. Nor is it known how much these figures differ from region to region.

Some traditional Indigenous beading methods left none or little archaeological evidence. Numerous historic references suggest that Indigenous People retained porcupine quillwork long after the introduction of glass trade beads. Glass beads were combined with quillwork.

“[Porcupine quillwork]…was never replaced by beadwork throughout the ‘real’ bead period, save possibly for the decoration of women’s dresses. Rather the two crafts existed side by side. The areas of decoration and the designs were much the same in both techniques.” (Ethnologist John Ewers describing Blackfoot clothing and decoration. Brackets mine) 42

This First Nations girl’s dress, collected by George Catlin, contains glass beads, quillwork, and painted decorations. According to Wayne Davis (1972:44) among the Blackfoot in the US: “This was particularly true of the last quarter of the nineteenth century which witnessed a florescence of Blackfeet beadwork and a decadence of quillwork.” 43

Other fragile organic materials, such as seeds, were also used as beadwork. And, unless carbonized or found in some other well-preserved context, might not survive in the archaeological record. Or not identified as beads. Lawrence J. Barkwell (Coordinator of Metis Heritage and Historic Research, Louis Riel Institute) descried how the Metis used Wolf Willow seeds as beads, even when glass trade beads were present. 44

A combination of wolf willow and glass seed beads used to make necklaces (top left). A close-up of wolf willow seeds showing the long lighter colored lines adding structure and design to the seed. 45

Many of these more traditional types of beading (i.e., dentalium, quillwork, and use of older forms of glass beadwork) have seen a resurgence in recent years as Indigenous artists identify with their histories.

Contemporary Indigenous beaders, by studying traditional beading techniques, have resurrected some of the Indigenous traditional forms of beading; such as making the once highly valued dentalium shell beads into earrings and necklaces. As Gwich’in beader Tania Larsson explains, it was her desire to retain traditions and identity: “I always wanted to wear jewelry that represented my Gwich’in culture and it was really hard to find that.” 46 So, perhaps we haven’t finished that quantitative traditional bead curve representing the popularity of Indigenous traditional beadwork as we continue to follow it into the 21st century. 47
‘Oh, Those Damn Seed Beads’

This was the cry that often went up when excavating at historic period sites. Too much of good thing. Thousands of tiny glass seed beads scattered in the dirt could make any archaeological investigation come to a grinding halt. Seed beads are really small (<2.0mm in diameter) drawn, tubular- or round-shaped beads that comprise most of the glass beads we find at fur trade sites. Sometimes they make up over 95% of the entire glass bead assemblage. 48

And because they are so small, they create problems when excavating. Most of them would fall through our conventional one-quarter inch mesh screens. To avoid this, we often use fine screens to recover them. But, if we used only fine screens to sift through all our dirt, little would get done. So, we often use a combination of both. 49

Photograph on the left is from the Hudson’s Bay Company Fort Victoria, Alberta, Canada of a beaded garment or bag. All the beads are the small glass seed beads used to decorate the object. One wrong stroke with the trowel and we would have lost this unique artifact. We would have only found hundreds of tiny beads scattered on the ground in its place. The photograph on the right shows seed beads found at the Fort Union site, North Dakota, USA. Seed beads, while always important throughout the fur trade, continued to become more popular throughout the nineteenth century. Indigenous People used more of these small beads for embroidery for larger designs and patterns on garments and other objects. 50

The documentary evidence shows that these small beads become increasingly popular over time. More small beads were needed as decorating large areas of skins or cloth with designs increased. 51

These two images illustrate changes in the use of glass beads by Plains Indigenous through time. Increasingly throughout the 19th century, many Indigenous groups used the much smaller glass beads to embroider large areas of cloth and leather (right), unlike the larger beads used as hair and necklace decorations (left). 52

Over the years archaeologists have done little with these beads except classify (to color and shape), count, and occasionally curse them. But a detailed look at them suggests much more. Over time they changed in size, shape and become more uniform. 53

Drawn glass seed beads from some of the western Canadian fur trade forts showing the major changes through time. The upper diagram shows the gradual change from tubular- and square-shaped seed beads most common in the late 18th century – early 19th century archaeological assemblages, to round or circular seed beads by the mid-19th century. 54 The glass seed beads are more frequently smaller after the mid-19th century, as the two photographs from Fort Riviere Tremblante and the later Fort Vermilion II beads indicate. There is also less variation in size, allowing First Nations and Metis women to sew more uniform, neater designs. The bottom photograph shows the amount of variation in bead shape of the larger seed beads on the left side, as opposed to the smaller, later period, more uniform seed beads on the right side. 55

It’s hard to imagine Indigenous women threading some of these smaller seed beads. As the above image shows some of these beads were 1mm or less in diameter. But they preferred the smaller, more uniform beads, allowing them to produce beautiful, more intricate designs in an array of colors.

This beaded cushion is from Fort Vermilion, Alberta, Canada. It was made by Metis Francoise LaFleur Moberly, daughter of Jean Baptiste Lafleur. c.1879-1885. Metis women were superb embroiderers and artists. Because of their exquisite floral designs (in both silk embroidery and beadwork), the Metis became know as the ‘Flower Bead People‘, crafting floral beaded works in a rich variety of colors. 56

A Few Closing Thoughts About Fur Trade Glass Beads

Another change, not discussed much here, occurred with those tiny seed beads. By the 1860s the number of bead colors had increased. But, that’s a topic for my next segment on glass trade beads. I’ll stop here before this blog becomes a book.

Besides providing you with some basic historical information about glass trade beads in the Americas, in particular Canada, I hope this work is valuable to the new Indigenous beaders out there. A lot of this information is not very accessible. A lot of our work never reaches the general public as much as we would like.

This second segment on historic glass beads focused more on some this artifact’s technical aspects. And the changes that occurred in glass bead styles over time. Some of these changes were related to changing European bead-making techniques. Others were driven by Indigenous People demanding either new or certain types of glass bead styles. The millions of tiny little seed beads represent a change to just not using beads as adornment in hair, ears or as necklaces. Instead they become works of art and design on clothing, dog and horse paraphernalia, allowing for a incredible degree and range of artistic variation, only possibly seen in pre-contact Indigenous quillwork and painting.

In the next, and perhaps last, segment on glass beads, I’ll examine in more detail Indigenous bead design, focusing primarily on bead color. Is this where group identity and distinctions reside? Is this where we see more cultural continuity? Or, is color, like different bead styles, simply a means of fashion, constantly changing, expressing affiliation or differentiation of individuals in Indigenous society? We’ll investigate further what those colorful glass beads can tell us about this topic?

Footnotes:
  1. This is my first attempt at using footnotes. I hope this format is more satisfactory to my readership. There are those of you who are only interested about basic facts and results. And, there are those readers who want more details and references. Hopefully this format addresses both needs.[]
  2. In my next segment on beads, I’ll tell you more about the meaning of the color combinations used for this beadwork.[]
  3. You can find more information about this artifact in: Timothy C. Losey, et al. 1977. Archaeological Investigations: Fort Victoria, 1975. Occasional Paper No. 3. Historic Sites Service. Alberta Culture, Historical Resources.[]
  4. Occasionally in archaeology we can assign artifacts to specific families or individuals, if the documentary or oral evidence is sufficient. However, in most instances we can only say that the glass beads were likely purchased, and the design made, by an Indigenous woman living at these fur trade forts. Little else is known about the owner. For example, was she of First Nations or Metis descent? Were her ethnic affiliations Cree, Chipewyan, Blackfoot, or some other Indigenous group?[]
  5. There are many excellent works on historic glass bead manufacture. I will list some of these sources in my footnotes as we go along. My aim here is to provide you with only enough basic information to follow the terminology I use in this blog.[]
  6. from Gregory A. Waselkov, David W. Morgan, and Billie Coleman. 2015. Ceramics and Glass Beads as Symbolic Mixed Media in Colonial Native North America. BEADS. Journal of the Society of Bead Researchers. Volume 27.[]
  7. http://8weeksinitaly.blogspot.com/2012/08/glass-tour-in-murano.html[]
  8. from: Alexander Nesbitt 1878:93-94. Glass. South Kensington Museum Art Handbook. Chapman and Hall, London. Brackets mine[]
  9. These images are from Wayne Davis’s M.A. Thesis. 1972. GLASS TRADE BEADS OF THE NORTHERN PLAINS-‘UPPER MISSOURI REGION. University of Calgary, Alberta, Canada. Wayne traveled to a number of major museums and institutions in the United States to look at the bead collections. He found these bead sample cards at the Peabody Museum. He sought advice about glass trade beads from renowned ethnologist John Ewers and archaeologist Waldo Wedel at the Smithsonian Institution.[]
  10. From: Karlis Karklins. 2012. “Guide to the Description and Classification of Glass Beads Found in the Americas.” In BEADS. Journal for the Society of Bead Researchers 24[]
  11. The glass bead manufacturing industry is much more complex than what I have set out here. There are many good sources describing the history of bead making in considerable detail. Perhaps one of the best for the beginner which is also available online, is this work from the Fort Vancouver Museum Series: Robert J. Cromwell Flynn O. Renard Elaine C. Dorset. Beads. NCRI Curation Series No. 5. This work describes the beads found at the Hudson’s Bay Company’s Fort Vancouver, Washington State, USA. Many of these beads are similar to those found at the western Canadian inland fur trade forts. What makes this work attractive for the beginner are the many excellent photographs of all the glass bead types recovered at this fur trade post. Also a very informative published Journal Series is: BEADS. Journal of the Society of Bead Researchers. This online journal includes a host of subjects on glass beads from all over the world.[]
  12. Kidd, Kenneth E., and Martha Ann Kidd. 2012. A Classification System of Glass Beads for the Use of Field Archaeology. BEADS. Journal of the Society of Bead Researchers. Volume 24, Article 7.[][]
  13. Photograph courtesy of Fort Vancouver Museum bead collection[]
  14. Karklins, Karlis. 2012. Guide to the Description and Classification of Glass Beads Found in the Americas. BEADS. Journal of the Society of Bead Researchers. Volume 24, Article 8.[][]
  15. Kidd, Kenneth and Martha Kidd. 2012. A Classification System for Glass Beads for the Use of Field Archaeologists. In BEADS. Journal of the Society of Bead Researchers. Volume 24(24).[]
  16. Image courtesy of: https://www.thebeadchest.com/products/rare-super-jumbo-elongated-russian-blue-tube-beads-25x15mm?_pos=1&_sid=92e5f454f&_ss=r[]
  17. Mathew Stirling, in a 1947 paper entitled: Arikara Glassworking. Journal of the Washington Academy of Sciences 37:257-363, searched the early ethnographies for references to this practice. Wayne Davis, 1972, continued Stirling’s work, quoting other sources in his M.A. thesis and a published paper: “Time and Space Considerations for Diagnostic Northern Plains Glass Trade Bead Types.” In Historical Archaeology in Northwestern North America, edited by Ronald M. Getty and Knut Fladmark. The University of Calgary Archaeological Association. Although most of his work focused on historic Plains First Nations in the USA, his approach and questions he asked have important implications for historic glass bead archaeology in Canada.[]
  18. From G. F. Will and H. J. Spinden. 1906. The Mandans. A Study of Their Culture, Archaeology and Language. Peabody Museum of American Archaeology and Ethnology, Harvard University Paper, Vol. III. Cambridge: “The secret is only known to a few. Glass of several colors is pounded fine, each color separate;this is washed in several waters until the glass stops staining the water. They then take an earthen pot of some three gallons, put a platter in the mouth of the pot which has a nitch on its edge through which to watch the beads. Then some well seasoned clay, mixed with sand and tempered with water till of consistency of dough, is taken, and from it are made number of little sticks of the size of the hole desired in the bead. these are heated to a red heat and cooled again. The pot is also heated to clean it. Then small balls of the clay are made to serve as pedestals for the beads. The powdered with a little wooden paddle, where is is paddled into an oblong form, the clay stick is then laid across it and the lass is wound regular. To put in other colors the other end of the paddle stick, which is sharp, is used to make a hole which is then filled with another colored glass. A hole is then made in the center of each pedestal and a bead stuck in it . Then the platter is put in the coals and the pot is inverted over it; dry wood is placed about the whole and burnt….When the beads are whitish red and grow pointed, they are taken off. The clay center is picked out with an awl.”[]
  19. Solid glass melts at 2552-2912F. Crushed or powdered glass melts between ~1300 – 1,500F. A large campfire can reach temperatures of over 1,100F. The clay pot might have increased these temperatures if the glass melted to be able to form beads. I’m searching for crushed or powdered glass as I write. I can’t wait to try out this technique.[]
  20. Long, long ago, we are told, the Cheyennes manufactured for themselves what might be called beads, but perhaps were small charms made of some vitrified substance—perhaps of pulverized glass—after the white people were met. Such beads are said to have been made within two or three generations. Many of them were fashioned in the shape of a lizard; that is, a four-legged object with a long tail and a small head. The ceremony connected with making such objects was secret, and he who wished to possess one was obliged to go to some person who himself had been taught the ceremony, and to ask that person to teach him how to make one. A payment was made for the service. The two went away together to conduct the ceremony in private. It is believed that in old times, long before the whites came, these beads were made from the quartz sand found on ant-hills, and that this was melted in an earthen pot. The secret of making them now seems to be lost.
    In later times they melted the glass, with which to make the beads, in the ladles used in melting lead for their bullets. These ornaments or charms were made in various shapes, often in the form of a lizard, as said, or flat on one side and round on the other. Sometimes they had a perforation through which a string might be passed; at other times merely a constriction between two ends about which a string was tied. The mold was made of clay.” George B. Grinnell. 2008. The Cheyenne Indians. Their History and Lifeways. World Wisdom)
    )

    Grinnell also described how Arikara women used only a frying pan, wooden tool and a bend of sand to ‘remake the beads’. ((This is how Davis phrased it. I haven’t looked up Grinnell’s original quote. If this is the case, they might have been crushing glass trade beads to make their own types of beads.[]

  21. George Catlin. 1848. Illustrations of the Manners, Customs and Condition of the Norther American Indians. London.[]
  22. Photograph courtesy of Fort Vancouver Museum bead collection. Robert J. Cromwell, Flynn O. Renard, Elaine C. Dorset. Within the Collection. A Look Inside the Fort Vancouver Museum. BEADS, NCRI Curation Series No. 5.[]
  23. Bead information from: Arthur J. Ray. 1974. The Indians in the Fur Trade. University of Toronto Press. HBCA B. 239/d/10-72[]
  24. Data from: Karlis Karklins. 1983. Nottingham House: The Hudson’s Bay Company in Athabasca, 1802 – 1806. National Historic Parks and Sites Branch. Parks Canada. HBCA B. 39/a/2, fols. 65-68.[]
  25. Occasionally glass beads can be assigned to individual households within the fort, when dwellings are well defined and occupation periods are short. We can also assume that both selection and use was gender-specific, being the domain of the Indigenous women working at the forts. It was a rare man that worked with glass trade beads.[]
  26. Record from HBCA B.224/d/2[][]
  27. Prior to the 1880s all women at these inland forts were of Indigenous descent. Thus, at the early forts we can be confident that either a First Nations or Metis woman purchased and used the beads. Diagram from: Heinz W. Pyszczyk. 1983. Historical and Archaeological Investigations: Fort Dunvegan, Alberta (GlQp-3). Final Report, Permit 82096. On File, Archaeological Survey of Alberta.[]
  28. Seriation is a relative dating technique in archaeology. Artifacts from numerous archaeological sites are placed in chronological order. For example, often we don’t know when a particular bead was initially made. However, by identifying which beads were found at well dated fur trade sites, we can begin to place their range of use dates in chronological order. In this article I’ll use contextual and frequency seriation. In the former method, only the presence or absence of specific glass bead types recovered from well dated fur trade sites is noted. In the latter method the relative frequency of specific bead types recovered from trade sites is quantified through time.[]
  29. These sites date from c.1788 to post-1900 A.D. They mostly come from central and northern Alberta, but also Manitoba, Saskatchewan, and British Columbia. I have also included the Fort Union, North Dakota glass glass bead assemblage on this list. It represents a Great Plains assemblage of which there are few in Canada. It contains a well documented, extensive list of beads. I also occasionally refer to the Fort Michlimackinac (c.1715 – 1781) glass bead assemblage which spans a much earlier date than any of our interior western forts. Also, most of the bead assemblages are only samples of varying sizes recovered from these posts. At some posts, over 50,000 beads were recovered; at others, as few as 50. A few posts, such as Nottingham House, were completely excavated. Thus, it should be kept in mind that the number of bead types present at each post may not be a true indicator of the actual number of bead types. Since number of bead types is usually a function of sample size, these numbers are inaccurate for making direct comparisons of number of bead types between fur trade posts.[]
  30. wound bead types = 16; drawn bead types = 13; mold/pressed bead types = 4; blown bead types = 3[]
  31. The bead type images are from: Kidd, Kenneth E., and Martha Ann Kidd. 2012. A Classification System of Glass Beads for the Use of Field Archaeology. BEADS. Journal of the Society of Bead Researchers. Volume 24, Article 7. This journal is online.[]
  32. Quote is from: Ewers, John C. 1954:42-43. The Indian Trade of the Upper Missouri Before Lewis and Clark: An Interpretation. Bulletin Missouri Historical Society, 8(1), St. Louis.[]
  33. Karlis Karklins, personal communication[]
  34. Quote from Sherry Farrell Raceette. 2004. Sewing Ourselves Together: Clothing, Decorative Arts and the Expression of Metis and Half Breed Identity. Ph.D. Dissertation. University of Manitoba. Judy Thompson. 1983. Turn of the Century Metis Decorative Art from the Frederick Bell Collection. ‘She Set the Fashion for the Whole North’. American Indian Art Magazine 8(2):37-53[]
  35. I believe the need to differentiate or affiliate oneself with others, is a pan-human behavioral trait – humans, regardless of time period or specific culture, react to new objects in a similar way. In many historic and contemporary societies a few individuals, able to obtain new objects, use them as status symbols. Once those styles acquire a certain degree of popularity within the population, new objects are acquired as a means to differentiate oneself from others. There are exceptions to the rule, however. The Amish, Hutterites and Mennonites, based on religious beliefs, discouraged the use of material culture to distinguish oneself. Instead opting for a uniformity in clothing and other objects. North West Coast Indigenous Peoples accumulated wealth (objects) and then gave it all away, thereby gaining status.[]
  36. The early 1750 median fort date represents Fort Michilimackinac (1716 – 1781) located in the Great Lakes Region. This bead assemblage was included because it has a much earlier date than any of the western forts, allowing us to determine the emergence of each glass bead type.[]
  37. If some groups retained them much longer, or didn’t use them at all, they might then signify group identity. Our ability to do this kind of comparative analysis is limited, since we often don’t have the specific bead assemblages representing specific Indigenous groups available to us.[]
  38. Again, I emphasize that this process was not consistent among all Indigenous groups. Some historic Indigenous groups, such as our North West Coast First Nations, had highly ranked societies, while others in the interior of Canada, were less so.[]
  39. From Malinda Gray. 2017. Beads: Symbols of Indigenous Cultural Resilience and Value. M.A. Thesis, University of Toronto. Brackets mine. This is the encounter between the Lewis and Clark expedition Indigenous groups in the early 19th century.[]
  40. Karlis Karklins. 1992. Trade Ornament Usage Among Native Peoples of Canada. A Source Book. Publishing, Supply and Services Canada, Ottawa, Canada. This is a great source book on historic Indigenous ornamentation and decoration in Canada. Lots of historic descriptions, illustrations and photographs of ornament use.[]
  41. As high as 33% at Fort Vermilion I (c.1798-1830), nonexistent at Nottingham House (1801-1804), 1.3% at Riviere Tremblante; 26% at Rocky Mountain House (1799-1821); and 34% at Fort Union (1829-1860); 0% at Fort Edmonton (c.1830-1915); 4% at Fort Victoria (1864-1898) and 0% at Last Mountain House. The general trend is towards the use of fewer traditional beads at the later period forts when these figures are averaged: Traditional beads at pre-1830 forts = 20.1%; post-1830 forts = 7.5%.[]
  42. John Ewers 1945:34. The Indian Trade of the Upper Missouri Before Lewis and Clark: An Interpretation. Bulletin Missouri Historical Society, 8(1), St. Louis.[]
  43. This image appears in Davis’ M.A. Thesis, pp.216. There is no information about group affiliation or date.[]
  44. From: https://www.scribd.com/document/23383369/Wolf-Willow-in-Metis Culture?fbclid=IwAR1zpP2bCRastXKYbzrThONp5SerNGLn1c953aDs_GrKIG_ZSyrOIdzqGoc. Forrest Hagen, Donalda, Alberta, who makes his own wolf willow seed jewelry, introduced me to this method.[]
  45. Upper left photograph courtesy of Lawrence Blackwell. Upper right image, courtesy of Forrest Hagen, who also posted more detailed information about this bead art form on my first bead segment.[]
  46. From: Christian Allaire. 2017. Meet 8 Indigenous Beaders Who Are Modernizing Their Craft. VOGUE[]
  47. Image on the left, courtesy of: https://ca.images.search.yahoo.com/yhs/search;_ylt=AwrVk9g9H2NidjEAUgUXFwx.;_ylu=Y29sbwNncTEEcG9zAzEEdnRpZAMEc2VjA3Nj?p=images+of+dentalium+jewelry&type=Y143_F163_201897_102620&hsimp=yhs-001&hspart=trp&ei=UTF-8&fr=yhs-trp-001&guccounter=1&guce_referrer=aHR0cHM6Ly9jYS5zZWFyY2gueWFob28uY29tL3locy9zZWFyY2g_aHNwYXJ0PXRycCZoc2ltcD15aHMtMDAxJnR5cGU9WTE0M19GMTYzXzIwMTg5N18xMDI2MjAmcD1pbWFnZXMrb2YrZGVudGFsaXVtK2pld2Vscnk&guce_referrer_sig=AQAAAMODv0KntyIrZydIfvb_4kvXiteoSqe3nFUkbYEjFVzZgbkkFp5vthaTXHvA8c070096Lzk5zBhPP_2Qxb0PujBv8Ha-yUjvbVHKcX3eckrIChm9VNniLL07gfdXaVJ1gHsD1ZEjq2BdJ8Pfi5i6IRDCbQfCE3Jkb7t4RBzWQuBH#id=7&iurl=https%3A%2F%2Fimg1.etsystatic.com%2F076%2F0%2F11489053%2Fil_fullxfull.815585791_qyb9.jpg&action=clickImage on the right courtesy of: https://i.pinimg.com/originals/6e/28/04/6e2804fea7702df59ca35da3158c3267.jpg.[]
  48. My former colleague, Mike Forsman recovered over 20,000 seed beads in the Main House excavations at the NWC Fort George (c.1792-1800). At Fort Vancouver, Washington State, USA, Lester Ross recovered over 100,000 glass trade beads, mostly of the ‘seed bead’ variety.[]
  49. Because the recovery methods are so erratic from one fort excavation project to another, quantitative comparison of seed beads to other larger types of beads, or between forts, is virtually meaningless.[]
  50. Image on the right from: Steven Leroy DeVore. 1992. Beads of the Bison Robe Trade: The Fort Union Trading Post Collection. Friends of Fort Union Trading Post, Wilson, North Dakota.[]
  51. According to Wayne Davis (1972:50) describing the Plains tribes: “In the “modern” period, that is, after 1840, practically everything which the tribes made of cloth or skin shows beadwork. Every kind of garment for both sexes, bags of all sizes’ and shapes, cradles, horse furniture, toys and tipi furnishings, and ceremonial paraphernalia are the principal objects’ which are beaded. The contrast between this profusion and relative scarcity of beadwork in the early period point to the great increase of the craft in the modern period.”[]
  52. Left Image: Mandeh-Pahchu, Mandan Man, painting by Karl Bodmer. Right Image, courtesy of George Ranch Museum Collection (https://texashistory.unt.edu/ark:/67531/metapth8340/m1/1/high_res/) []
  53. Wayne Davis, in his 1972 M.A. Thesis noted: “Douglas (1936:91) noted that “seed” beads were 1/16 to 3/32 of an inch in diameter, and varied in thickness considerably, especially the older specimens. Often he found that one edge was thicker than the other. Improved methods of manufacture in today’s bead factories make for much more regularly sized and shaped beads. The uneven nature of a sampling of beads would therefore suggest something
    of their possible age.”
    []
  54. Fort example at the northern HBC post, Nottingham House (1801 – 1804), 15% of the glass seed beads were tubular-shaped. At the later Fort Vermilion II site (c.1830 – 1935) only 0.5% were tubular-shaped. When examined temporally, other forts produced similar results.[]
  55. In his M.A. thesis, Wayne Davis, although he did not provide any quantitative analysis from his American Plains posts, already predicted these temporal changes in American Indigenous glass seed beads, that we can now quantify from our Canadian archaeological glass seed bead assemblages.[]
  56. Photograph courtesy of the Fort Vermilion Museum, Alberta, Canada.[]

Beads in Antiquity: Searching for Meaning (Part One)

Most of you are familiar with images such as these when anyone mentions beads. Glass trade beads come in all shapes, sizes and colors. These are only a few of the thousands of beads I’ve recovered from our many fur trade sites in western Canada. Their beauty, uniqueness, and considerable variety are one reason Indigenous People, across Canada and the world, traded for them. While certainly beautiful, beads were also a means of expression unparalleled by few other mediums. But what types of beads did Indigenous People make before glass trade beads appeared in the Americas; and the world? And how did those prehistoric beads shape acceptance of glass trade beads in the Americas?

“Beads are fucked up. I just want to address that….The historic threads of the slave trade, land theft, and community displacement are strung through glass beads from Europe. Needless to say I’ve got a complicated relationship with those beautiful little bubbles of glass.” (Bobby Dues, contemporary beader, Sisseton Wahpeton Oyate Tribe, Tucson, Arizona) (From: Christian Allaire. 2017. Meet 8 Indigenous Beaders Who Are Modernizing Their Craft. VOGUE)

Beads: Just Baubles, or More?

I recently read an article in Vogue Magazine about contemporary Indigenous beaders. Bobby Dues’ statement brought back memories for me about beads. He isn’t alone when expressing his feelings about glass trade beads. I’ve learned that the hard way several times over the years. Beads, it seems, revive peoples’ memories about their history. And for some Indigenous People, those memories are dark.

My first confrontation with this darker side of glass trade beads came in 1980. I was a teaching assistant at Simon Fraser University’s archaeological field school at Bella Bella, British Columbia, Canada. We were excavating the historic HBC Fort McLaughlin (c.1833 – 1843) site. Local First Nations People assisted us. The sight of glass trade beads brought on some negative, emotional outbursts from our assistants.

The conversation went something like this: ‘You gave us a few glass beads, for furs that were much more valuable. You duped us.’ Over the years that’s one recurring theme I’ve heard about glass trade beads.

I sympathize with these feelings. However, they bring up some misconceptions many people have about glass trade beads.

Let’s start with trade. Trade is: A transaction between two parties which is mutually acceptable to both parties. Under most circumstances trade can’t happen unless both sides agree to it. First Nations People weren’t forced to trade. They traded freely, acquiring something useful and unique, in return for something common in their territories. The transaction may look lopsided. If you only look at it from a European monetary perspective.

And from the many historic accounts I’ve read, Indigenous People were shrewd traders. For example, the Gwich’in demanded the latest styles in beads at the Yukon forts. When they didn’t get them they either didn’t trade or traded elsewhere:

“…the frustrations in trying to ensure an up-to-date inventory of beads of acceptable size and color for a market that changed faster than the time required to order and receive goods from England.” (Trader, Alexander Murray, Fort Yukon)

Whenever something unique enters a trade system, it becomes valuable (because of its uniqueness). And highly desirable. I just read an article about Venetian glass trade beads found in the Americas before Columbus arrived. How? By trade routes from Europe through Asia and across the Bering Sea, into Alaska. Why? Because Indigenous People desired this easily transportable, and very unique item. And likely because they had something valuable to offer in return.

Blue wound glass beads, found by Michael Kunz, the University of Alaska Museum of the North and Robin Mills of Alaska Bureau of Land Management. The beads were found at three sites along Alaska’s Brooks Range. Mass spectrometry carbon-dating on trace amounts of twine discovered alongside the beads dated them between 1397 – 1488 A.D. Photograph courtesy of: https://www.smithsonianmag.com/smart-news/tiny-blue-beads-european-artifact-north-america-old-180976966/. European articles entered the Americas before Columbus arrived. Along trade networks stretching from central Europe reaching the Americas, these easily transportable and rare items were desired (but not forced on) by Indigenous People in the Americas.

Secondly, there’s the whole gnarly problem of the cross-cultural value of things. Yes, from a European monetary value system, sea otter pelts were worth more than a few glass beads. At least in Europe. But, those glass beads carried much more value in the Indigenous world than sea otter pelts. They carried, what Anishinaabe, Ojibway bead researcher Malinda Gray has termed cultural value. In other words, because of their uniqueness and scarcity, they brought prestige and power to their Indigenous owners.

As Gray points out this trivialization of the value of objects traded or gifted to Indigenous People all started with first contact:

“The language Columbus used is belittling his Indigenous “converts” with the phrase “trifles of insignificant worth”. The discourse has been set immediately after European contact that beads hold no value and are easily used as tools to
seduce Indigenous people into the European value system. For the Europeans, beads are merely trinkets, which will be used in trade and conversions, but to the Indigenous people they are objects that can increase status through expression.” (From: Malinda Gray. 2017. Beads: Symbols of Indigenous Cultural Resilience and Value. M.A. Thesis, University of Toronto.)

So ingrained were glass beads in some Indigenous prestige and economic systems, that, for example, they determined whether a Kutchin man could even marry. Unless he first decorated his prospective wife with glass beads. And if he wanted to become a chief, he had to collect two-hundred dollars worth of beads (from Murray, Alexander Hunter. 1910. Journal of the Yukon, 1847-48. Edited by L J. Burpee. National Archives of Canada, Publication No.4. Government Printing Bureau, Ottawa.)

To say that historically glass beads were an inconsequential bauble is to do a great disservice to their importance and value among Indigenous Peoples. And promotes disrespect for the people who traded for them! Historically, value is often a tough thing to pin down.

Try as I might, my arguments about the value of those blue trade beads to North West Coast First Nations People fell on deaf ears.

However, not all Indigenous perspectives about beads are negative. As I continued reading in Vogue Magazine, many young Indigenous artists are picking up beading as a medium (https://www.vogue.com/vogueworld/article/indigenous-beadwork-instagram-artists-jewelry-accessories). And viewing the bead’s historic role in a more positive light. Beader, Tania Larson puts it this way:

““I [was] looking at all the Gwich’in items they [Smithsonian Institution] had in their collection. . . . These items that belonged to my nation were the most beautiful pieces of art I had seen. This visit is when I really fell in love with the color palette of vintage and antique beads. The colors and qualities of them were so different from today’s bead production.” (Tania Larson, Teetł’it Gwich’in, Yellowknife, N.W.T., Canada. brackets mine)

Catherine Blackburn (Dene, Saskatchewan, Canada) believes the study of historic beadwork gives Indigenous People a voice about their histories:

“Beadwork showcases the individuality of our histories. . . instead of generalizing our cultures and perpetuating harmful narratives….Within this space, we can reclaim and celebrate our identities.”

As I read their stories, certain words and concepts about beading kept reoccurring: Beading as a means of communication, expressing individuality, unity/commonality (family and group); and, connection (with the past). In a seeming contradiction, capable of expressing both distinction and commonality among their owners.

As Melinda Gray also points out:

“Beadwork encompasses every aspect of Indigenous life, it transcends temporarily and spatiality….there are two sides of beads within the culture: beadwork embodies both the traditional part and the contemporary future.”

So, before taking a closer look at those glass trade beads in the Canadian fur trade, let’s step back and examine some ancient and traditional forms of beading around the world. Hopefully, this digression into the past will lead to discovery and clearer understanding of their meaning.

First, we need to define what a bead is. The definition below is quite broad. Believe me, I’m all over the map when it comes to what constitutes a bead:

“A small piece of glass, stone, bone, or other material, of various shapes, and perforated for threading with others as a necklace or rosary or for sewing or attaching onto fabric, leather or some other solid medium.”

Antiquity of Beads in the ‘Old World’

Over the millennia, throughout the world, beads appeared in every shape, color and size imaginable. People from many cultures made them from stone, bone, ceramic, metal, glass, wood, claws, horn, quills, and teeth.

As to their appeal and function. Well, the answer to that question varies and changes. Obviously beads of any sort were pretty and used for adornment. However, it seems like a lot of work and effort went into something that was simply meant to be aesthetically self-pleasing. And, if beads were used for adornment, then, for who? For only the owner? Or for others? An audience? Perhaps some of the examples below will lead to answering these questions.

Moroccan Snail Shell Beads

In November, 2021 archaeologists discovered perforated snail shell beads in Morocco dating back 150,000 years – possibly the oldest known example of human jewelry ever found.

These snail shell beads pose an intriguing question. Did early humans already need to communicate to others with adornment? Or are we reading too much into what may have been simply an article for personal adornment? According to archaeologist, Steven L. Kuhn: “[The beads] were probably part of the way people expressed their identity with their clothing….They’re the tip of the iceberg for that kind of human trait. They show that it was present even hundreds of thousands of years ago, and that humans were interested in communicating to bigger groups of people than their immediate friends and family.” (From: https://news.artnet.com/art-world/worlds-oldest-jewelry-morocco-2037635)

If this evidence passes academic scrutiny (because there is currently some debate whether humans made those perforations) then expression with objects may be an ancient human trait.

In this early bead example, it took little effort to fashion the natural form and beauty of the snail shell into a necklace of beads. But, with this method, while effective, there was little choice in adornment (unless you used different types of snail shells). And, if these shells were common and accessible then everyone could make a shell bead necklace, leaving little room for individual expression.

African Ostrich Shell Beads

In other parts of Africa, 50,000 years ago, researchers found archaeological evidence of the first human-formed beads made from ostrich shells. This is considered an important step because now, as Doctors Jennifer Miller and Yiming Wang state:

“Ostrich eggshell (OES) beads are ideal artifacts for understanding ancient social relationships. They are the world’s oldest fully manufactured ornaments, meaning that instead of relying on an item’s natural size or shape, humans completely transformed the shells to produce beads. This extensive shaping creates ample opportunities for variations in style. Because different cultures produced beads of different styles, the prehistoric accessories provide researchers a way to trace cultural connections.” (From: Jennifer M. Miller and Yiming V. Wang Ostrich eggshell beads reveal 50,000-year-old social network in Africa. Nature.)

Unlike the snail shell beads, these ancient ostrich shell beads were shaped thereby allowing individuals, families or entire groups of people to express their identity, either purposely or otherwise (i.e., through their collective beliefs, values, or methods) by shaping them differently. Original story by: Jennifer M. Miller and Yiming V. Wang Ostrich eggshell beads reveal 50,000-year-old social network in Africa. Nature. Photograph courtesy of: Jennifer M. Miller (https://www.shh.mpg.de/2080930/beads-social-network-africa#:~:text=Ostrich%20eggshell%20%28OES%29%20beads%20are%20ideal%20artifacts%20for,humans%20completely%20transformed%20the%20shells%20to%20produce%20beads.

Egyptian Faience Beads

The early Egyptians highly valued their jewelry, including beads. Using a combination of ceramic and a glass-like glaze, named faience, this newly formed plain-colored material turned vibrant shades of yellow, red, brown, green, turquoise, orange, auburn, and blue when kiln fired.

Unlike beads made from natural materials, these beads were fashioned into different shapes and sizes. Like the ostrich shell beads, the Egyptians attained more bead shape variety this way.

Egyptian faience beads come in a variety of sizes, shapes and colors. With the addition of color, there was now even more artistic license in their use. Badarian cultures of the Predynastic Period (c.4,400 – 4,000 BC) first made faience beads. These first faience beads were from glazed steatite – a soapstone rich in talc. (from: https://ca.search.yahoo.com/yhs/search?hspart=trp&hsimp=yhs-001&type=Y143_F163_201897_102620&p=imageantiquity+of+egyptian+faience+beads)

The Egyptians, however, went one step further. Instead of using the natural color of the material, they controlled color. And for Egyptians, color, as it does in many cultures, took on symbolic significance and meaning:

  • Black – death, the underworld and the unknown; birth, life and resurrection;
  • Red – life or a higher being, destruction, blood and flesh;
  • Blue – life, birth, rebirth and fertility; Nile River;
  • Green – growth, goodness, fertility and life; good deeds and productivity;
  • Yellow – sun, eternity;
  • White – purity, innocence, cleanliness and clarity.

(Information from: https://www.jewelryshoppingguide.com/egyptian-jewelry-guide/)

Ancient Egyptian bead colors also symbolized good luck, fortune, love, joy, fertility not only during life but also as a funerary figurines afterlife. (From: https://ancientegyptianfacts.com/ancient-egypt-beads.html)

Antiquity of Beads in the Americas

The antiquity and popularity of beads varies considerably regionally throughout the Americas. Prior to European contact, Indigenous People made beads from stone, bone, shells, quills, and teeth. And, as in other parts of the world, they often fashioned them from naturally occurring materials or deliberately shaped and sized them to suit their needs.

West Coast of Canada

One outstanding example of a stone beads comes from Sechelt, British Columbia, along Canada’s West Coast. Archaeologists, together with local shíshálh First Nation members uncovered burials, dated c.3,700 years ago, literally shrouded in stone beads. Parallel rows of nearly 350,000 small stone beads, weighing about seventy pounds completely covered the man’s body.

Recreated faces and bead covering of two burials from Sechelt, British Columbia, Canada. The stone beads worn by the man alone represented a tremendous investment in labour, making them highly valuable. According to a recent article in The News Talkers (https://thenewstalkers.com/community/discussion/32424/buried-in-beads-4000-years-ago-this-chiefly-family-lives-again) : “Producing so many beads by hand would have taken a vast amount of time, says Clark. Made from small pieces of shale or mudstone, each bead had to be ground into a disc roughly half the size of an aspirin, then drilled with a hole. When archaeologist Brian Thom of the University of Victoria tried to replicate this process several years ago with pieces of slate and traditional stone tools, it took him 13 minutes on average to make just one stone bead. An experienced bead-maker could have sped things up considerably, doubling the rate of production, suggests Clark. But even in that best-case scenario, more than 35,000 hours would have been needed to make the chief’s ceremonial bead garment.”

This tremendous investment in labour bestowed on this man, through beads, distinguished him from most others. Few others would have been able to duplicate burial shrouds of this sort in North West Coast society.

Dentalium: Nature’s Bead

Also on America’s West Coast, First Nations People used the beautiful, elongated dentalium, or tusk shells as natural beads.

Also referred to as tooth shells or tusk shells. Traditionally, the shells of Antalis pretiosa (previously known as Dentalium pretiosum, the precious dentalium (a species which occurs from Alaska to Baja, California) were harvested from deep waters off the coast of Vancover Island.

According to Janet Walker (https://walkergoldsmiths.com/dentalium-is-everywhere/): “Dentalium is a seashell harvested on the Pacific coast of western Washington and southern British Columbia in waters averaging 60 feet deep, it rarely washed up on shore and had to be deliberately removed from the sea floor with a broom-type tool.  It was traded everywhere. The standard was 6 foot strings strung end to end in a manner that they didn’t fit inside each other as the standard unit of trade.  Journals of early fur traders and ships logs mention fathoms of Dentalium – 6 feet long used as a standard for trading.”

Dentalium was so precious and desirable, it was traded over a wide geographical area. It endured during historic times when glass trade beads were already available. We find dentalium shell at our interior western 18th and 19th Canadian fur trade posts, nearly a thousand miles from the West Coast. Was its retention one way of keeping that connection with one’s past? Perhaps. It did represent long-standing historical traditions and retention of cultural value.


Shells of the species Antalis pretiosa which had been gathered on the shores of Vancouver Island were first traded to the Canadian Plateau between 1,000 and 1 BCE. During the 1st century CE, the shell was a common trade item in the Plateau region. The shell’s length and quality determined value. Highest quality shells would be about 2.25 inches long, and a dozen would typically be strung together. A 27.5 inch string of dentalium was worth a redwood dugout canoe (Dubin, Lois Sherr. 1999. North American Indian Jewelry and Adornment: From Prehistory to the Present. New York: Harry N. Abrams).
Photograph: Choker Plateau c 1875-1900 Shell (Dentalium pretosium), glass beads, sinew, brass beads. L 33 cm. Nez Perce National Historical Park, NEPE 2194 Bracelet 1830s Shell (Dentalium pretosium), glass beads, leather. L 26 cm. Nez Perce National Historical Park, NEPE 8762.
Wishram woman in bridal garb, c.1910. While her garb is mostly made of glass beads, her earrings are dentalium. (Photograph by Edward S. Curtis (1868-1952). If you look closely, she is wearing what look like wampum beads (see below) around her neck and cowrie shell beads around her waist.

East Coast Wampum Beads

On North America’s East Coast, First Nations People cut and drilled shells to make wampum beads. Wampum — a Narragansett (Algonquian language family) word meaning a string of white shell beads — are tubular beads manufactured from Atlantic coast whelk shell (white beads) and quahog clam shell (purple beads).

The Two Row Wampum Belt (Kaswentha) of the Haudenosaunee People: “It symbolizes an agreement of mutual respect and peace between the Haudenosaunee and European newcomers (initially the Dutch) to North America. The two rows of purple wampum beads on a background of white beads represent a canoe and a European ship. The parallel paths represent the rules governing the behavior of both Peoples. The belt stipulates that neither group will force their laws, traditions, customs or language on each other, but will coexist peacefully as each group follows their own path.” (Source: Malinda Gray. 2017. Beads. Symbols of Indigenous Cultural Resilience and Value. M.A. Thesis, University of Toronto).

“Wampum was its own visual language that represented more than beads, it represented a value system for the Iroquois people that was not only political, but also expressed cultural values.” (From: Malinda Gray, Anishinaabe, Ojibway beader. In Beads. Symbols of Indigenous Cultural Resilience and Value).

Elk ‘Ivory’ Beads

On the prairies in central Canada and the United States, First Nations People used elk canines as a sort of bead, perforating it and attaching it to their garments.

According to Karen Giering, Royal Alberta Museum: “Elk were hunted for food, their hide was used for clothing, their antlers were made into a variety of tools, and their eye teeth were shaped and polished into pendant beads used to decorate clothing (Grinnell 1892; Kidd 1986; Wissler 1986). All elk have two upper canines or eye teeth. Sometimes called ivories, these teeth are vestigial tusks and are actual ivory.” (From: Elk Ivory Pendants in Alberta. ARCHAEOLOGICAL SURVEY OF ALBERTA
OCCASIONAL PAPER NO. 38)
An Arikara girl. c.1908. Wearing a garment adorned with elk teeth. Photograph by Edward Curtis. Ethnographer G. B. Grinnell describes elk teeth and marriage arrangements
of the Blackfoot People: “A chief’s daughter would already have plenty of good clothing, but if the girl lacks anything, it is furnished. Her dress is made of antelope skin, white as snow, and perhaps ornamented with two or three hundred elk tushes. … Elk tushes were highly prized, and were used for ornamenting women’s dresses. A gown profusely decorated with them was worth two good horses.”

Besides being highly decorative, what else did the possession of the dentalium or elk canines convey? Because they were so difficult to attain, they were valuable. And because not everyone could purchase them in such large quantities, they distinguished the owner from others. In other words, they communicated the owner’s gender, marital status, and social position to others.

The Blackfoot people have always communicated important information through clothing. From a distance, a Blackfoot person could be identified by their style of dress. Colour, pattern, and trim conveyed information such as an individual’s status, family affiliation, or special relation-ships with certain animals (Wissler 1986). These garments were more than beautiful clothing. They embodied and expressed values and spiritual beliefs at the core of Blackfoot life.” (Karen Giering. 2019. Elk Ivory Pendants in Alberta. ARCHAEOLOGICAL SURVEY OF ALBERTA
OCCASIONAL PAPER NO. 38)

Quill Beads

Wampum, stone or dentalium beads were less than ideal for decorating large areas of objects because they were either time-consuming to make or hard to acquire. With quills (from porcupines or birds), however, People could decorate large areas of an object. But, are quills beads? Here I’m pushing the definition to the limit.

Porcupine or bird quills were light and hollow and attachable to objects. Unlike most stone or shell, they could be dyed to produce a variety of colors (black, blues, yellow, and reds). Both design elements and colors among the Arapaho and Odawa represented sacred beings and connections to nature. According to A. G. Green and Daniel Radus, specific colors had unique meanings allowing for diverse and unique designs carrying many cultural or religious meanings (From: Green, A. G. (2015-01-01). “Arapaho Women’s Quillwork: Motion, Life, and Creativity”. Ethnohistory. 62 (2): 387–388. Radus, Daniel (2018). “Margaret Boyd’s Quillwork History”. Early American Literature. 53 (2): 513–537.

Quillwork rosettes of concentric circles adorned historical Plains men’s shirts, as did parallel panels of quillwork on the sleeves. These highly abstracted designs contained layers of symbolic meaning. (From Feest, Christian F. Native Arts of North America. London: Thames and Hudson, 1992.)

And even though quills were linear objects, both geometric and circular/curvilinear designs could be created from them. Also, the porcupine (and birds) was widely spread throughout North America (from Alaska to Mexico) providing a readily available medium to work with. In places where it wasn’t present, people traded for quills.

Beautiful porcupine quill work showing both geometric and curvilinear designs. Prior to the introduction of small glass beads, this was one of the few decorative methods capable of covering large areas of an object. Are quills a kind of bead, or acting like beads? Left Photograph courtesy of: https://www.thecanadianencyclopedia.ca/en/article/quillwork

Most often the quill was not really a bead in the strict definition of the word. It acted more like embroidery (introduced after European contact). But there were exceptions, such as on the traditional quillwork below.


This is perhaps one of the most intriguing photographs of quillwork I’ve ever run across. Not only do both glass beads and quills decorate this historic Eastern Woodland legband – a good example of the retention of quillwork even with the presence of glass beads. But according to authors Christina Cole and Susan Head: “Unflattened quills can be cut and strung like tubular beads as shown in the finger-woven legbands (NMAI 242006);…. these legbands also have flattened quills wrapped around groups of warp yarns to form a decorated warp fringe.” (From: Cole, Christina, and Susan Head. 2010. The History and Analysis of Pre-Aniline Native American Quillwork Dyes. In Textile Society of America Symposium Proceedings.)

Mayan Beads

The ancient Mayans of southern Mexico and central America made jewelry, including beads, from many materials. However, only higher status individuals could wear jewelry. Jade, common to the region, became one of most valuable materials for making jewelry (because making it was so labor-intensive), including beads. It attained religious significance among the Mayans, both in religious offerings and its association with water and vegetation. Mayans associated the green jadeite with rain and the beginning of the growing season and especially the cultivation of corn. It was symbolically associated with life and death. Green jadeite adornment was used in the “life after death” rituals and burials of the important members of society.

Jade beads, in all shapes and sizes were an important adornment for some members of Mayan society. In Mayan society, not only the object (beads) takes on meaning (differentiating members of society) but the material (jade) takes on spiritual and social (semi-translucent green for royalty) significance. Photograph from: https://www.gettyimages.ca/photos/jade-maya

Jadeite can be white, pink, lavender and black. But the most revered color was ya’ax chich or the semi-translucent green jade. While higher status individuals could wear jade beads, most green jadeite jewelry were reserved primarily for royalty (the city-state kings and queens and their relatives). (From: Jack Guy. 2018. How Jade Became More Valuable than Gold in Mayan Culture. Culture Trip: https://theculturetrip.com/central-america/guatemala/articles/how-jade-became-more-valuable-than-gold-in-mayan-culture/)

Where Does Meaning Reside?

Beads, in a variety of shapes, colors, sizes and materials, are a part of our human history. That variety, it seems, is essential for various forms of expression or human distinction or affiliation. Beads, like other forms of material culture, carry meaning and expression in any of their various attributes (e.g., color, material, or shape) or attribute states. But there are no set rules (more on this later) on what attributes signal what messages. Unfortunately, not all attributes express the same things among individuals in different societies. It is the historic trajectory of those attributes which eventually determine specific meaning.

Meaning in bead attributes is sometimes well-documented historically. But not always. When found in the archaeological record, the bead’s context and association is important to ascertain meaning. For example, the simple presence or absence of a specific object, material, or attribute may signal distinction or affiliation among members of society. Among the Maya, jade found only among parts of the population signals distinction of certain members from others. Conversely, a bead attribute such as blue may signify commonality or affiliation within a group, if found among many members in society; as opposed to members of another group or society.

A Few Closing Remarks

Beads range from the very simple natural variety to those requiring a tremendous investment of work in their manufacture. Some were simply means of self-adornment and self-expression, while others carried more information about their owners to others. Pre-colonial beads attained value when made of rare, or hard to acquire objects (e.g., shells, claws or teeth), or investing countless hours making them. Often their degree of value dictated who within a group owned them.

While natural beads might convey value and express gender and social standing, they were limited to some degree as a means of social communication because of their limited diversity. The deliberate manufacture of beads into a variety of shapes, sizes and colors, would have allowed for more and more complex forms of expression. Was this something that humans desired, thus driving more varied and complex bead innovations among certain groups?

All these processes were in operation among Indigenous groups long before Europeans reached the shores of the Americas. As we will see in the next segment on beads, it wasn’t a big leap for Indigenous Peoples to incorporate trade beads, which were rare and unique, and came in a bewildering array of new materials, sizes, shapes and colors, into their economic value and social systems.

One thing is certainly clear. The bead wasn’t just some pretty bauble, or trifles of insignificant worth to Indigenous People, as first described by Christoper Columbus (I wonder if he saw the hypocrisy of his statement as he counted his prayers on his rosary beads). Unfortunately that simplistic view of the bead, and of the People who made and wore them, has lingered for over five-hundred years. And has tainted our perception of its worth and their traditions.

Our Canadian Winters. Love ‘Em’? Leave ‘Em’. Or, H….?

This is currently the scene across most of Canada. Winter has set in enveloping us in blistering cold and hills of snow. Image courtesy of: https://ca.images.search.yahoo.com/yhs/search;_ylt=AwrWp2TROvBhanMAUAgXFwx.;_ylu=Y29sbwNncTEEcG9zAzIEdnRpZAMEc2VjA3Nj?p=images+of+Edmonton+winters&type=Y143_F163_201897_102620&hsimp=yhs-001&hspart=trp&ei=UTF-8&fr=yhs-trp-001#id=34&iurl=https%3A%2F%2Fmedia-cdn.tripadvisor.com%2Fmedia%2Fphoto-s%2F0b%2Fe4%2F7c%2F77%2Fwinter-in-edmonton-canada.jpg&action=click

As I sit here in Edmonton, Alberta, Canada, looking out my window at the winter scene and watching the rest of the Country get buried in a half metre of snow, I’m reminded of this quote:

“‘Hear! hear!’ screamed the jay from a neighboring tree, where I had heard a tittering for some time, ‘winter has a concentrated and nutty kernel, if you know where to look for it.’”

Henry David Thoreau

Right now I’m searching for that nutty kernel but can’t seem to find it!

However, it’s not as if Canadians have been sitting around doing nothing about winter weather. Just sitting around freezing our butts off. For centuries people have waged war with this northern Wonderland. Trying to better deal with its harshness than merely watching and cursing it.

We’re known for our climate throughout the world. Especially our winters. Long, cold winters envelope most of the country. There are good things about winter: Hockey, curling, skiing. But there are also bad things: Record low temperatures. Or snow up to our chins. And then when winter decides to play real dirty, both intense cold and snow come at the same time. And last for a month longer than usual.

This January has been particularly nasty in my neck of the woods. We’ve recorded some of the coldest temperatures on earth. Lasting weeks. And now as January ends, suddenly it’s above freezing. Winter’s way of playing mind games with us. Because we all know, winter is far from over.

I’ve compiled a list of things we made to better deal with winter. Or learned from winter over many centuries. It’s by no means a complete list. Given the weather outside, this might be a good time to share some of them with you.

Winter has its moments. Late last winter my friend Bob Dawe and I went ice-fishing on one our central Alberta lakes. The weather was pretty decent. Unfortunately the fish didn’t get the message.

Physiological Adaptations

If exposed long enough, humans begin to adapt physiologically to extreme climates. The northern Inuit People of Canada have been exposed to extremely cold temperatures for thousands of years. And over the centuries their bodies slowly adapted to their frigid climate. They have a more compact body stature, fewer sweat glands, blood vessels expand, higher metabolic rates than humans living in warmer climates. It’s all about conserving heat or getting it more efficiently to the body’s extremities.

I figure at this rate, in five-six thousand years, our descendants will fare better in our Canadian climate. As we physically begin to adapt to cold.

Foods and Diet

One of the greatest threats of harsh winters to humans is finding both enough and the right kind of foods, or adapting to the foods in that environment. Both Indigenous People and early Euro-Canadians have taken what nature gave them to deal with winter.

Fat-Rich Diets

Traditional Inuit diet consisted of well over forty-percent animal fats and their total calories were derived from mostly meat. Animal fats contain a tremendous amount of calories required to keep warm in extreme temperatures. Yet Inuit People who ate those traditional fat-loaded foods were healthy and didn’t suffer from heart disease.

Muktuk from the bowhead whale. Image courtesy of: https://ca.images.search.yahoo.com/yhs/search;_ylt=AwrUjdN2P_Bh2jMA0zMXFwx.;_ylu=Y29sbwNncTEEcG9zAzEEdnRpZAMEc2VjA3Nj?p=image+of+seal+or+whale+blubber&type=Y143_F163_201897_102620&hsimp=yhs-001&hspart=trp&ei=UTF-8&fr=yhs-trp-001#id=16&iurl=http%3A%2F%2Fcdn.c.photoshelter.com%2Fimg-get%2FI00007Zg9wdhpGs8%2Fs%2F800%2F700%2F17b-30115.jpg&action=click

Early Euro-Canadian fur traders didn’t shirk from a high fat diet either. I’ve written elsewhere that the people living at the forts preferred meat rich in fat. Mainly because fat is high in calories necessary to deal with Canada’s winters. And from the data I’ve looked at, like the Inuit, early Euro-Canadian traders lived a healthy life.

Butchering a bison. Some parts of the bison were very high in fat content. The hump and rib meat contained large amounts of it. Bone marrow, containing large amounts of fat, was also considered a delicacy in the fur trade. Image courtesy of: http://www.noplainjaneskitchen.com/wp-content/uploads/2010/11/showing-the-hump-11.jpg

Vitamin C

First Europeans arriving in Canada suffered considerably in the winter from scurvy – caused by Vitamin C deficiency. Inuit foods, especially organ meats, contain high amounts of Vitamin C. The Inuit froze their meat and fish and frequently ate them raw. This practice conserves Vitamin C which is easily lost when cooked. Raw kelp is also high in Vitamin C. Narwhal skin contains more Vitamin C than oranges.

Rose hips, growing on wild roses, are very high in Vitamin C. One-thousand grams of rose hips contain 2000 mg of Vitamin C. In fact they contain fifty-percent more Vitamin C than lemons and oranges and 10 % more than blueberries. In western Canada Vitamin C was growing under the very noses of the early traders. Images courtesy of: https://depositphotos.com/stock-photos/rosehips.html

The inner bark of certain species of pine trees contains Vitamin C. The Adirondack People (meaning tree eaters) of Upper New York State, USA, as well as other Indigenous groups, harvested these barks for sugars, starch, and a rich source of vitamin C.

Food Preservation

Our Canadian cold isn’t always a bad thing. It’s a natural fridge to preserve food. At many fur trade forts, winter was a time when the Companies stocked up on buffalo meat, and then processed it into pemmican in the spring. This First Nations highly nutritious mixture of berries, pounded meat and fat was the mainstay of the western Canadian fur trade brigades.

At the forts the meat was kept in large ‘hangars’ or ice-houses until ready to consume:

“The men had already commenced gathering their supply of fresh meat for the summer in the ice pit. This is made by digging a square hole, capable of containing 700 or 800 buffalo carcasses. As soon as the ice in the river is of sufficient thickness, it is cut into square blocks of uniform size with saws; with these blocks the floor of the pit is regularly paved, and the blocks cemented together by pouring water in between them, and allowing it to freeze solid. In like manner, the walls are solidly built up to the surface of the ground. The head and feet of the buffalo, when killed, are cut off, and the carcasses without being skin, is divided into quarters, and piled in layers in the pit as brought in, until it is filled up, when the whole is covered with a thick coating of straw, which is again protected from the sun and rain by a shed. In this manner the meat keeps perfectly good through the whole summer and eats much better than fresh kill meat, being more tender and better flavoured.” (Painter and author, Paul Kane, while visiting Fort Edmonton, Alberta, Canada, in 1846)

When I came to Canada in the early 1950s, we didn’t have fridges or freezers. Keeping produce and meat from rotting in the summer months was a challenge. We also had a large earth-covered walk-in root cellar to preserve our food. It was kept just above freezing in winter, and cool in the summer. Canning, smoking, drying, salting, and sausage making also helped solve some of our preservation problems. And the freezing winter months solved the rest.

And ironically guess what was invented to preserve food in the summer? Frozen packaged food of course. Ever wonder where that idea came from? Well, it just so happens the idea originated in Canada.

Clarence Birdseye, an American worked alongside the Inuit in Newfoundland, Canada, as a fur trapper. He noticed that fish caught by the Inuit fishermen froze almost immediately when pulled the water in the sub-zero winter conditions. Birdseye noted that the fish retained its flavor and texture, even when it was defrosted months later.

In 1920 Birdseye started experimenting with frozen peas. He first blanched freshly picked peas and then fast-froze them preserving their color, texture and flavor. In 1929 Birdseye introduced his ‘fast freezing’ techniques to the American consumer and the frozen food industry was born.

But, we sometimes forget who the original inventors of fast-frozen food were. The Inuit People of Canada. An idea which was modified to meet the challenges of food preservation in warmer climates in the twentieth century.

Shelter

Snow and ground are great insulators. Why not use them as building materials to protect us from our severe winters?

In certain parts of the Canadian Arctic, Inuit People made igloos entirely of snow and ice. It’s considered one of the most elegant and ingeniously built dwellings in the world.

Constructing an igloo out of blocks of snow which had to be a certain consistency and hardness to work. Both body temperature and small lamps could heat the inside of igloos up to nearly 20C. Image courtesy of: https://i.pinimg.com/originals/78/15/61/7815618d7ec9f7fe6a883db936c72aed.jpg

In one of my university boreal ecology classes, we shoveled snow into a large mound and then hollowed out the inside. Even with a candle, or only our body heat, we could get the inside of that structure above freezing. If you’re ever caught in the freezing cold, this simple shelter could save your life.

Interior British Columbia First Nations People constructed semi-subterranean houses to deal with the cold. The pit dug into the ground made up the walls while the roof, constructed from poles and covered with sod, was above ground.

A traditional Secwepemc pit house from south-central British Columbia. Most pit houses were eight to ten metres in diameter and 1.5 metres ) deep.
People went in and out via a notched pole ladder extending through the smoke hole in the roof. Image courtesy of: http://www.skeetchestn.ca/files/images/History/Pit-House.jpg

Many first Ukrainians immigrating to Canada constructed simple semi-subterranean houses before building more elaborate above-ground dwellings. These pit houses, or burdeis, while simple enough probably saved them during their first Canadian winters.

According to Mike Parker: “The Burdei, a sod house style structure, is a temporary shelter for early Ukrainian settlers. Despite its simplicity, it is one of the most memorable structures at the Ukrainian Cultural Heritage Village near Edmonton, Alberta, Canada.” Image courtesy of: https://www.pinterest.ca/pin/64668944638438534/

Why we haven’t adapted our construction techniques to take advantage of these natural materials, is beyond me. Instead we build everything above ground and allow -40C wind chills to blow on our dwellings, expecting to keep warm. Even tipis were banked with snow to better insulate them and keep everyone inside from freezing in the winter.

Subterranean houses are both warm in the winter and cool in the summer, requiring way less energy. And you don’t have to live like a gopher. The houses I have seen are at ground level with mounds of dirt on top and the sides. The downside of this kind of dwelling: It needs to be built stronger to support the heavy loading on the roof. And it needs a good ventilation system to remove the humidity, because it is essentially air tight. All these construction methods and technologies are now available. Photograph courtesy of: https://thearchitecturedesigns.com/unique-underground-homes-designs-you-must-see/

Clothing

Parkas

Many prehistorians believe that without intricate sewing methods to make windproof and waterproof clothing northern Indigenous People might never have inhabited the interior Canadian Arctic where winter temperatures are often deadly. The modern Canadian parka is a derivative of Inuit parkas made from caribou skin to keep out cold and moisture.

From left to right: Woman’s sealskin parka, dated 1475 (Courtesy of: https://en.wikipedia.org/wiki/Parka#/media/File:Qilakitsoq_woman’s_parka_sealskin_1978.jpg); Inuit woman with a Amautik which holds the baby against the mother’s back inside the pouch with oversized hoods that are large enough to cover both mother and child (Courtesy of: http://babybaby-baby-baby.blogspot.com/2010/10/amautik-amazing.html); Modern Canada Goose Parka. Only £799.00. (Courtesy of: https://www.triads.co.uk/triads-mens-c1/outerwear-c30/coats-c209/canada-goose-expedition-parka-red-p65711

Inuit People deal with some of the harshest, deadliest climates on the face of the earth. But, it wasn’t just the cold in the winter that could harm you. The sun’s glare off the bright snow was also harmful. Snow goggles, to prevent snow blindness likely originated in Siberia and the Canadian Arctic.

Left: Inuit man wearing snow goggles carved out of caribou antler. Image courtesy of: https://canadianinnovationspace.ca/snow-goggles/. Right: Modern snow goggles perform the same function of cutting down the brilliant glare from snow in the winter.

Wool Blankets Become Capotes and Jackets

The wool blanket soon became an important trade article for northern Indigenous People of Canada. But the blanket was was often repurposed into many articles by both Indigenous People and French Canadian Voyageurs.

The first point blankets were created by French weavers who developed a “point system” — a way to specify the finished size of a blanket — sometime in the 17th century. (See also Weaving.) The term “point,” in this case, originates from the French word empointer, which means “to make threaded stitches on cloth.” The points were simply a series of thin black lines on one of the corners of the blanket, which were used to identify the size of the blanket.

One article of clothing perhaps above all others, the wool capote, or blanket coat, was specifically made to deal with the harsh Canadian winters. It was warm and light. If it got wet it was easy to dry. It was soon modified into various types of coats according to the needs and tastes of those wearing it.

French Canadian Habitants and voyageurs, First Nations and Metis People wore wool capotes. Design and color were based mostly on personal needs or common shared values. Northern hunters liked the mostly white colors for camouflage in the winter. It became an article of fashion, being easily modified according to the tastes of the people. My wife and I own hooded capotes which were sewn for us using an original fur trade design. Left: Cree elk hunter by Arthur Henning; Center: Chipewyan hunter, Wood Buffalo by Frederick Remington; Right: Dog driver dressed for winter travel with capote and snowshoes.

“The Metis man’s winter attire was the capote; a thigh length coat with full length sleeves which could come with or without a hood or cape. Most had small shoulder decorations made of red stroud. To get the coat closed were both thongs and buttons or a sash.”

Lawrence J. Barkwell

What started simply as a wool blanket coat for winter use continued to transition. Through fashion the blanket coat or Mackinaw established itself with our Canadian identity in a number of ways. The British military used them during the war of 1812, shortening them from the traditional blanket coats. Unable to find enough blue blankets, the commanding officer had the coats made of tartan designed wool blankets. Today’s tartan Mackinaw jackets are a derivative of those early army coats.

Different styles of capotes worn by Metis People. Some were elaborately stitched and fringed or turned into buttoned double breasted jackets
Left: My wife’s woolen capote made in 1974 from an original design. Center: A men’s Hudson’s Bay blanket coat, or Mackinaw, 1965. Right: The Canadian winter Olympic team, 1968, Grenoble, France, wearing blanket coats in opening ceremonies. Canadian Olympic teams also wore the blanket coat in 1936, 1960 and 1964. A distinctly Canadian winter garment that endures the test of time.

Transportation

Given our severe winter weather our ability to get around is hampered considerably. Here are a few things we did about it.

Snowshoes

The origin and age of snowshoes is not precisely known. Archaeologists currently believe they were invented between 4,000 to 6,000 years ago somewhere in central Asia. However, these first snowshoes were made of wood or leather blocks or planks. Indigenous People in Canada invented the lighter webbed snowshoe. There are many designs depending on region and type of snow cover.

Snowshoes also became important in the Canadian fur trade. Women living at the forts netted the snowshoes using specially made bone needles.

Snowshoe netting needles, similar to this one found in Maine, USA, have been recovered from Canadian fur trade sites. The needle was used to knit the rawhide mesh onto the snowshoe frame. Image courtesy of the Peabody Museum: https://collections.peabody.harvard.edu/objects/details/12855

From Sleds and Toboggans to Snowmobiles

In a previous post I talked about the long history of sledding in Canada and the strong dog sledding tradition which originated among northern Inuit People. Because of our strong sledding traditions and winters, it’s not surprising then that the first snowmobiles were built in Canada. In 1935 Joseph Bombardier assembled and successfully tested the first snowmobile. The first model had a sprocket wheel and a track drive system, steered by skis.

Bombardier B-12 snowmobile. Image courtesy of: https://ca.images.search.yahoo.com/yhs/search;_ylt=AwrWnaNE5u5hcGAARQYXFwx.;_ylu=Y29sbwNncTEEcG9zAzEEdnRpZAMEc2VjA3Nj?p=images+of+bombardier+snowmobile&type=Y143_F163_201897_102620&hsimp=yhs-001&hspart=trp&ei=UTF-8&fr=yhs-trp-001#id=5&iurl=http%3A%2F%2F3.bp.blogspot.com%2F-UFcJTF4PwJk%2FTgF2Z27QnxI%2FAAAAAAABmyI%2FUMfVKUW1N38%2Fw1200-h630-p-nu%2F4373984169_b03a0e9ef8_o.jpg&action=click
I recall one of the first Ski-Doos in Cabri, Saskatchewan around the mid- to late 1960s, owned by my friend David Culham. We had great fun on those first sleds. Ski-Doo Bombardier, 1965. Image courtesy of: https://ca.images.search.yahoo.com/yhs/search;_ylt=AwrWnaNE5u5hcGAARQYXFwx.;_ylu=Y29sbwNncTEEcG9zAzEEdnRpZAMEc2VjA3Nj?p=images+of+bombardier+snowmobile&type=Y143_F163_201897_102620&hsimp=yhs-001&hspart=trp&ei=UTF-8&fr=yhs-trp-001#id=21&iurl=https%3A%2F%2Fi.ytimg.com%2Fvi%2Fkixz_0C8oJg%2Fmaxresdefault.jpg&action=click

Snowblower

In 1925, in Montreal, Canada, Arthur Sicard constructed the first self-propelled rotary snow blower, based on the concept of farm grain threshers.

A Sicard rotary snow blower. Image courtesy of: http://www.barraclou.com/truck/sicard/sicard_snowblower.jpg
Today’s walk-behind snowblowers are capable of handling large amounts of snow and throwing it considerable distances. Photograph courtesy of: https://ca.images.search.yahoo.com/yhs/search;_ylt=AwrUimR06e5h_1gAjwQXFwx.;_ylu=Y29sbwNncTEEcG9zAzIEdnRpZAMEc2VjA3Nj?p=origns+of+the+snowblower&type=Y143_F163_201897_102620&hsimp=yhs-001&hspart=trp&ei=UTF-8&fr=yhs-trp-001#id=14&iurl=https%3A%2F%2Fedenapp.com%2Fwp-content%2Fuploads%2F2020%2F10%2FOG-snowheader_lifestyleheader.jpg&action=click

The Future

As our Canadian climate continually challenges us, people experiment with new methods and technologies to either cope better with winter, or take advantage of what it gives us.

I recently read about a joint research project between McMaster University and UCLA. Researchers are developing a method to harness electricity from falling snow. According to an article by Mark Wilson: “Researchers at UCLA have developed a first-of-its-kind breakthrough by building a small silicone sensor-generator that can harvest electricity directly from snow–dubbed a “snow-based triboelectric nanogenerator” or “Snow TENG.” It could lead to a new wave of wearable electronics, more efficient solar panels, and even entire buildings that can produce energy during winter weather with a simple coat of paint.” (Courtesy of: https://www.fastcompany.com/90339438/winter-is-coming-but-good-news-we-can-now-harvest-energy-from-snow)

Essentially researchers constructed a thin sheet of silicone: “The thin device works by harnessing static electricity. Positively-charged falling snow collides with the negatively-charged silicone device, which produces a charge that’s captured by an electrode.”

Well, the snow is falling anyway, so we might as well take advantage of it. For some odd reason, snow carries a positive electric charge. However, as Wilson further elaborates in his article, the ingenious part of this technology is its application. If you attach a piece of this silicone to the bottom of your winter boot and it comes in contact with snow it produces electricity.

I’m not sure where this nanotechnology will go but what about putting a layer on winter automobile tires. Is that possible? Researchers are already experimenting with tires that make electricity caused by the friction between the tire and the road surface. Why not snow?

Hygge – What?


Everyone’s occasionally felt it in the dark, cold winter. Feeling a little mentally low. When you’re stuck inside. And it’s freezing cold outside.

The Danes have tried to replace this feeling with one of well-being in the winter instead. They call it Hygge.

According to one article, Hygge isn’t a word—it’s a feeling. According to The Hope Chest: “It’s that feeling you get when you come inside after a long, cold, windy day and see a beautiful dinner, and the whole house smells like frikadeller. It is the warmth of a fireside glow at the coffee shop, or a warmhearted conversation with a friend. It is woolen slippers and a plush blanket curled up with a book, or a quaint dinner party with your closest friends. Hygge is anything that makes you feel comfortable and content.” (Courtesy of: https://danishhomeofchicago.org/the-hope-chest/2019/01/07/top-ten-scandinavian-inventions/)

Well, I’ve searched for my own Canadian version of Hygge. I think I’ve found it. On a cold, dark, January Canadian winter evening I like to have a few of these below to deal with our weather. Who knows, maybe it will even catch on. Easy on the ice though….

Just Grinding (No More Pecking) Away: Stone Maul Progress(?) Report (Three)

Many of you might be wondering, after reading my previous two posts about my stone maul project, why I haven’t written a follow-up post since last May. I have lots of excuses to avoid grooving that quartzite maul. Pain is high on the list. Skinning my fingers, breaking finger nails, arthritis and inflamed joints, and generally getting stone dust all over myself, immediately come to mind. And then of course there’s the reno from hell happening at my home.

Enough said. Perhaps it’s time for an update. I continued grinding away on my maul for about two more hours for the rest of May. I used a quartzite burin-like flake again because it worked better than anything I tried so far. However, I added wet sand to the groove for these two hours of work. I could feel the grinding flake catching and abrading the maul channel much better than before. Below is what the maul looked like after those two hours (now six hours in total).

My stone maul after about six hours of work. I was hoping maybe the inside of the maul was softer than the cortex (the outer oxidized surface of the rock). Not true say my knowers of stone. The inside is just as hard, as I’m finding out.

The groove is about 9cm long and 1.0cm – 2.0cm wide, and about 1mm – 2mm deep. The area on either side of the groove is becoming polished. Probably from my fingers continually rubbing against it.

I’m having a hard time keeping the groove straight. Once a straight groove line is established, it’s easy to keep this line when working near the middle. But at the end of the groove is where the battle to keep it straight is being waged. I’m worried that if I stray too much the groove on either end of the maul won’t join up when I reach the other side of the maul (if I ever get that far). So I penciled a line on the maul to help keep me on track.

I also noticed that no matter which direction I grind the groove, by occasionally reversing the maul in my hand (wrongly thinking the other end might be softer), one wall of the groove is ridging while the other shows more rounding or angling. I can’t currently explain why this is happening. If I was only pushing one way or not reversing the maul, then either the angle of the flake or the angle I am holding the flake and grooving might explain this difference.

Sketch of cross-section of the maul surface with the groove. One side is relatively straight. The other side is more angled/curved to the surface which is also a little lower than the other side of the groove. Occasionally I find myself holding the grinding flake at an angle, instead of straight up and down. But because I turn the maul often this angling should affect both walls of the groove the same?

A Little More Background on Making Ground Stone Tools

There are few historical or ethnographic descriptions of people making groundstone tools of any kind. Karen Giering, Royal Alberta Museum, sent me this interesting article, on ground stone axe manufacture by the Héta (meaning All of Us) Indians of Brazil, written by Vladimir Kozak in 1960 (published in 1972 in the Journal of the American Museum of Natural History). The Héta are now extinct and Kozak was almost too late to record this practice. The Héta had already replaced their stone axes with steel axes. His is one of the few articles written describing the manufacture of a stone axe in the Americas. Some of the processes involved apply to my ground stone maul.

Héta man and woman wearing the sipál neck adornment of their tribe. Photograph courtesy of: https://acateamazon.org/forgotten-tribes/forgotten-tribes-amazon-heta-brazil/

Kozak describes the stone axe: “The blade was nearly oval in cross section, and the bit was sharpened to a keen edge. The butt was buried deep within the thick upper part of the wooden handle, which was about two to three feet long. In the hands of one skilled in its use, the stone ax was, as I came to see, an effective tool.”

Although he had trouble convincing the Héta to make a stone axe for him (why do this when they already had steel axes), Kozak finally succeeded. Here are some highlights when Kozak observed the Héta men making an axe:

  • Careful selection of the stone for the axe head: “A stone should be of the proper size and have the approximate shape of the finished ax, that is, an elongated ovoid. By beginning with a stone of this shape, much less abrading is required, thus saving the ax maker many hours of work. Beside being the right size and shape, the stone must be tough enough to withstand the many blows it will have to deliver.” Unfortunately Kozak doesn’t mention what kind of stone the Héta men selected.
  • The hammerstone used for pecking the axe to shape it should be harder than the stone axe head. Nor does he mention the kind of stone selected for pecking.
  • Pecking and Shaping: “He spread his knees, brought the soles of his feet close together, and placed the ovoid stone between them. Then, taking the hammerstone in his hand, he began to peck. He pecked at the surface of the stone with light, carefully directed blows. No chips or flakes came off during the pecking, only fine granules. Little by little, the hard, water-polished cortex of the stone was completely removed, and the cobble was lightly pitted over its entire surface. Stone dust soon covered his hands and feet and accumulated on the mat beneath him.”
  • The pecking and shaping process took several days (number of hours are not mentioned). It was time-consuming, exhausting and required precision. One wrong whack could ruin the axe. As the author notes: “The work seemed endless to me, and I was beginning to see why Eirakan and the others had thought my request senseless.” I can sympathize.
  • Grinding and Polishing: Once pecking was completed, the men ground and polished the axe blade to sharpen it: “A large sandstone cobble was brought in for the purpose, along with some white clay, which Nango put into a water- filled container made from a folded palm spathe. He then took the ax head, dipped it into the container, held what was to be the cutting edge firmly against the sandstone with his hands, and began rubbing. He ground one side of the ax, turned it over, ground the other side, went back to the first side, and so on.” This step took an entire afternoon with Nango exerting considerable pressure on the grinding stone to sharpen the axe.
The axe blade is dipped in a wet clay solution and ground against a piece of sandstone held securely by the feet. The man uses both hands to apply downward pressure. The sandstone shapes the blade and the clay solution polishes it. Although Kozak doesn’t mention it, I’m assuming the polishing is meant to reduce the amount of friction when cutting. Also noteworthy, the grinding and pecking steps are not separate, but done together. Photograph courtesy of: https://acateamazon.org/forgotten-tribes/forgotten-tribes-amazon-heta-brazil/
  • Kozak states: “Under favorable conditions, the Héta could make a stone ax in three to five days, with another half-day for hafting.”
The completed stone axe, hafted and ready to perform multiple tasks. Photograph courtesy of: https://acateamazon.org/forgotten-tribes/forgotten-tribes-amazon-heta-brazil/
  • The Héta used stone axes for felling trees, cracking nuts, chipping and breaking bones, grinding and hammering. They sharpened the end of the handle to drive into rotten trees to extract insect larvae or to dig out honey: “Pounded into the ground with a heavy stone, it made holes for shelter poles. It functioned as a digging stick, and was used to excavate pit traps. And occasionally, when wielded as a club, the stone ax could be a dangerous weapon.” In short, the axe was an important multi-functional tool for the Héta.
The stone axe set in a wood handle with a sharpened end. The sharpened wood handle is used here to extract honey from a beehive. (Photograph courtesy of American Museum of Natural History, Vol. LXXXI, No.8, 1972)

Unlike the Australian Yir Yoront’s stone axes, there didn’t seem to be a ripple effect through the rest of Héta culture when they abandoned the stone axe in favor of the steel axe (for the Yir Yoront story go to this link: https://canehdianstories.com/wp-admin/post.php?post=2016&action=edit). But then Kozak wasn’t there to record all the details before and after the transition took place.

Controversy continues regarding the eventual adoption of metal tools by Indigenous Peoples around the world. Superior effectiveness and efficiency of metal versus stone tools top the list. Robert Carneiro has done a lot of work among Amazonian groups, including the Amahuaca Indians of Eastern Peru. He found it took seven-eight times longer to clear a patch for planting in the rain forest with a stone opposed to a steel axe. Others found there is only a slight difference in stone opposed to metal axe efficiency (a 1.4:1 ratio). I made a crude bifacially flaked stone hand axe to cut down a 10cm diameter tree. It took much longer than with a steel axe. Even if hafted with a more refined, thinner, sharper edge, the stone axe still would not have been as effective a cutting tool as a metal axe.

And then there’s the labour involved making stone axes or mauls. That too might have been a factor for choosing metal axes. I’m finding that out the hard way.

Back to the Grind

Recently I worked on my maul for another four hours. At first I tried to change grinding tactics. Instead of pushing a stone flake across the maul to cut the channel, I decided to take a page from the Héta. The Héta men used their feet to hold the sandstone abrader, essentially the reverse of what I was doing. They took the stone axe and ground it against the sandstone grinding stone. I held my maul between my knees and ground the flake against it. Why not reverse this process so I could apply more force when grinding.

I couldn’t use my feet to hold the grinding flake (besides being impractical, this position would have put me in bed for days), I put the stone grinding flake in a vice and then rubbed the stone maul against it; hopefully to create much more force and pressure. I’m quite certain there were no metal vices in Canadian prehistory, but there probably were vice-like devices for holding the abrader (flake or grinding stone) in place while rubbing the maul stone over it.

So, I tried it. It didn’t work. Well, at least not yet. Because my maul’s groove channel was so thin and shallow, I had trouble determining if I was in the groove while holding the maul upside down to grind it on the flake held by the vice. I tried a few times and finally gave up and went back to holding the flake to grind the maul held firmly between my knees. However, once the channel becomes deeper and wider, I’ll try this method again. This method should create a lot more downward grinding force and speed up the process. It can’t get much slower than it is now.

After Eight Hours of Work

Quartzite maul after eight hours of grinding.

After two more hours of grinding, and a total of eight hours of work, here are a few facts and things I learned.

  • I didn’t use sand in the groove as before. This likely would have gotten me tossed out of the house. It was too cold to work outside;
  • The length of the groove has not substantially changed (still about 9cm long);
  • The groove channel is now about 3mm wide;
  • The groove channel is about 1.5 – 2.0mm deep;
  • The edges of the grinding flake become smooth and highly polished after a certain amount of use. Once that happens the grinding flake is no longer effective. It just slides along the surface, not gripping it. At this point I either select a new flake or retouch the flake’s grinding edge by whacking it on the maul. Once retouched I can feel the flake grab in the maul groove again. Over a one hour session I retouched the flake 6 – 8 times;
  • Instead of using my feet to hold the maul in place while grinding it, I use both my knees and one hand to hold it firmly (holding it with my feet is out of the question). It’s hard to apply any force on it if it’s continually wobbling. Perhaps it would be more efficient to make some sort of vice-like mechanism to hold the maul more firmly while applying pressure on the flake with both hands;
  • I also used flakes with broader edges and angles to widen the groove channel. I’m using two different sizes of flakes to accomplish my objective: A larger flake to broaden the groove and a thin, narrow flake to deepen it. Eventually I want to create a 1cm – 1.5cm wide groove whose maximum depth is about 4mm – 5mm.
  • Shape and angularity of the grinding flake matters if you want to protect your fingers when applying a considerable grinding force. If there are sharp edge or pieces jutting out anywhere you grab the flake, it will eventually hurt you.

After Ten Hours of Work

Quartzite maul after ten hours of grinding.

After ten hours of work I feel slightly more encouraged, no longer thinking this project is totally hopeless. I seem to be working harder too as I can see actual progress being made. ‘Mind over matter’….If only that were true.

I’m also becoming a little possessive of the damned thing. As I labour away, I think about how devastating it would be if the maul broke or got lost. After all that work!

As I’m working, I also think back on the Australian Yir Yoront stone axes. The Yir Yoront traded for their stone axes and the men then controlled who used them. Was this control an act of exerting power and authority over others (as the author suggests)? Or was this possessiveness related to the axes value – the amount of labour (through trade) it took to acquire the axe, which was not easily replaced?

A few more facts after 10 hours of work:

  • The groove channel is 6mm wide in some places. My aim is to make it about 1.5cm wide;
  • In some places the groove channel is now 3mm deep;
  • I’m using a wider and larger flake edge which is beginning to grind away at the walls of the groove. The idea is to constantly increase the flake size as the groove gets deeper, to widen it.
Cross-section of cobble and grinding flake. The flake is wider than the bottom of the groove. When forced down the flake begins to abrade the sides of the groove, widening it.

I’ve also taken photographs of the flakes I used to grind the maul. I don’t see much edge retouch or any striations with the naked eye. But I do see the edges of the flake ground down and smoothed; and in some areas highly polished. There’s a whole raft of literature on stone tool microwear patterns made when using stone tools for cutting, grinding, pounding of different materials. Currently I’m unaware if anyone has ever identified wear patterns from making ground stone tools. If the methods I’m describing to make this maul are similar to those made prehistorically, then we should see similar types of evidence in the archaeological record.

So, I’ll just describe what I saw under a magnifying glass. On one grinding flake I used there’s a high degree of polish on the primary working surface – in this case the narrow tip of the flake. There is some polish along the sides of the flake as well, but not nearly as intense as on the tip. At this level of magnification I don’t see any other marks/striations on the flake working edge. I would need a low-power microscope to see those, if they exist.

The highly polished flake edge surface after grinding the maul groove in photographs A and B. A rejuvenation flake removed from the polished surface of the grinding flake in photograph C. The grinding flake is now ready for more work.

I also managed to find the rejuvenation flake I knocked off trying to retouch the edge on my grinding flake. This one is about 10mm by 7mm. The working edge of the rejuvenation flake (where it rubbed against the maul groove) is highly polished. It has some diagnostic flake attributes (striking platform, bulb of percussion, fissures, etc.). But, you would be hard-pressed to identify it as a flake with the naked eye.

The polished grinding edge of the rejuvenation flake removed by striking it on the maul. Even though it’s small, the flake shows most of the attributes of a typical percussion flake (a striking platform and a bulb of percussion). However, unlike other flakes it shows the highly polished grinding platform left over from grinding the maul groove. Unless you are looking closely, it would be easy to miss this type of evidence. In fact with most of our screening methods, this flake, or anything smaller, might not even make it back to the laboratory.

And, once again, to remind all of you who are unfamiliar with quartzite why my task is taking so long. Check out the image below. I tried knocking off some flakes from a frozen quartzite cobble with my hammer. Broke the hammer.

After attempting to smack off a few quartzite flakes from a cobblestone to use to grind my stone maul, and breaking my hammer, I had to take a much heavier stone quartzite hammerstone to eventually remove these flakes from the core. This cast-iron hammer didn’t have a chance. Quartzite is extremely hard. Right up there with steel. And harder than jade.

A Few Closing Thoughts

Below is a composite photograph showing my progress in grinding the maul for ten hours. I almost quit at hour four. It’s plain to see why.

As you can see, ten hours of grinding has produced a significant groove in the quartzite cobble (well, at least to my eyes). But I’m far from even finishing one side of the cobble. At this rate, it will take at least forty hours, or longer, of grinding to complete just one side.

In summary, there are only so many ways to speed up this process:

  1. Increase the downward force exerted when grinding the groove. I could accomplish this by putting either the grinding flake or the maul in a vice and using both hands to push down harder while grinding;
  2. Increase the grinding surface area of the flake. By using flakes that have a greater contact length with the grinding surface. This might work even better if I could also apply more force as well;
  3. Speed up the number of grinding repetitions per minute. Not practical. I’d have to pump some weights and be forty years younger to do that.

I’ll write my next maul progress report after I have completed twenty hours of work. As the maul groove gets wider, I may also have some new insights on the grinding process to share with you.

My Stone Maul. Just Grinding and Pecking Away: Progress(?) Report Number Two

I picked up this ground-stone granite maul on the Canadian prairies many years ago. I decided to try and make one like it. Hopefully by making one I would understand better the methods Indigenous peoples used, and also the amount of work involved.

In a previous post (https://canehdianstories.com/wp-admin/post.php?post=2853&action=edit) I discussed Indigenous ground-stone technology on the Canadian prairies. I decided that because we knew so little on how some objects, such as grooved stone mauls, were made I would try to make one. This method of inquiry is known as ‘Experimental Archaeology’ – a sub-field of archaeology intended to gain insight into prehistoric methods people used by replicating them. These are a few of my thoughts after a little over a week of working on this project. As usual, whenever I take on projects like this there are some real eye-openers. So far, I haven’t been disappointed.

I managed to get in about four hours of work on the quartzite cobble I chose to make my ground-stone maul. Below is a photograph showing my progress pecking and grinding the stone maul. Most of you, after looking closely at this photograph, will probably think: ‘What progress? I don’t see any.’

My quartzite cobble that I chose to make a ground-stone maul, after about four hours of work. As is quite evident, there are some scratches on the cortex (the outer oxidized layer of the cobble) and ever-so slight grooving.

Well, let me explain. Perhaps another photograph will help. If you look at the cobble closely, at just the right angle, with just the right light, you can see a slight indentation on the cortex (the outer oxidized layer on the rock). You can actually feel it better than see it.

A closer view of my attempt to start a groove on the maul after about four hours of work. In places I may have broken through the cortex. But barely. I’m also finding it hard to aim the stone grooving tool and keep it straight. It kind of wants to wander everywhere. Once I have established a groove, it should become easier to direct my aim.

In short, it’s going to take a little longer than the eight hours someone estimated it took to make a granite grooved maul. At this rate with the methods I’m using, you might add one or two zeros to the number eight. I’ll explain my methods, and the tools I’m using to make the maul, to give you a better understanding WHY it’s taking me so long to make any progress.

Pecking? Forget It

First I thought I would try to peck the groove using a small quartzite pebble having the same hardness as the maul. That didn’t work worth a damn. Not only was the impact area of the pecking stone too round, it wore down faster than the cobble I was pecking. And, after forty-five minutes of banging away I was getting nowhere, fast. At first the surface of the cobble looked good with all the stone flour on it. Then I realized that the flour was coming off my pecking stone and not the cobble.

This method was a waste of time. At least for me. It might work better to form basalt hand-mauls, but is difficult to make an initial groove in the quartzite cobble this way. Also, the hammerstone I used was too large with too blunt an end to be accurate. And, while there was a lot of stone flour on the quartzite cobble, it was mostly from the hammerstone.
The end of the hammerstone I used to peck on the quartzite cobble, after about forty-five minutes. It was getting me nowhere. Quite a bit of wear on the hammerstone though.

Sawing and Grinding

Next, I found a small coarse-grained sandstone flake. I used a sawing motion across about two centimetres of the flake edge to grind a groove on the cobble. This method worked much better than pecking. After one hour, I thought I saw some of the natural pockmarks on the cobble surface begin to smooth out. But, there was no point measuring my progress. I don’t think they make instruments capable of measuring that small a depth. I was averaging about 150 – 155 strokes per minute using this sawing technique. Or, with one hour’s work, 9,000 – 9,300 strokes. My fingers cramped pretty badly after only one hour’s work.

I started grinding the cobble with this orthoquartzite or hard sandstone flake. I used the entire thin edge length of the flake to grind away on the cobble surface. This method worked moderately well, but after about one hour, the flake no longer had an effective edge and will have to be replaced or resharpened.

Continued Search for Just the Right Tool

The coarse-grained sandstone flake worked well enough. But, was there something better? At this stage of the project I’m still guessing and experimenting with different methods. Next I fashioned a few more quartzite flakes. But this time I looked for flakes having burin-like tip (a type of handheld lithic flake with a chisel-like edge which prehistoric humans used for cutting wood or bone), or graver tips (lithic tool with a slightly more pointed tip than a burin), so that I could better gouge the surface of the maul.

This close-up view of a lithic burin tool used for cutting wood, bone and antler, also seems to work for grooving the quartzite cobble. From: https://www.quora.com/What-is-a-burin-used-for
In this photograph I’m using a burin-like quartzite flake tool and pushing it forward on the quartzite cobble. I’m slowly but surely removing microscopic bits of quartzite to form the groove for the maul. At first I just hand-held the flake. But after a while it was doing more damage to my fingers than to the cobble. So, I wrapped it in paper towel to prevent blisters (a real authentic touch). After about two hours of using this tool, the tip got dull. I retouched the edges of the flake to resharpen it. It should still work until at some point it becomes too small to effectively hold. I am also thinking of using a heavier, larger flake to apply more pressure on the edge. It might also be easier to hold.

If I held the flake at just the right angle (about 20 – 30 degrees) and pushed real hard, I felt I was scouring the cobble better than with the other two methods. However, if the flake point is held to low, not much scouring happened. If I held the flake too high, I couldn’t push it very well, or accurately. Blisters were starting to appear on my fingers, so I wrapped the flake in a paper towel. A piece of leather would do quite nicely as well. Occasionally I found my fore-finger scraping across the cobble as I pushed the flake.

Closeup of the tip of the quartzite flake, showing the wear from grinding on the stone maul. Also, the wear on my fingers holding the flake to grind the maul.

I’m working with rocks, which are good conductors of heat. I’m causing a lot of friction and heat when using the sawing methods. Perhaps dunking the flake tool in water, or adding water to maul surface, would prevent heat build-up.

A Few Closing Observations

It’s pretty obvious already that this project is going to take a long, long time to make. Unless I figure out a better method of incising my cobble. So far, both the sandstone saw and graving/gouging with considerable force on the flake work the best.

Patience is a key here. We live in a society of instant results and gratification. This project would be something you worked on all winter when there was less other work to do. Like knitting sweaters or large rugs, which took many hours to fashion. I also find that grinding away is a lot like distance running. Eventually, through repeated strokes which take little thinking, it puts your mind in a different place, relaxing it. We could all use a bit more of that in our present-day society.

Given the amount of work that I expect to put into making this tool (if I ever do), I would highly value it. In archaeology we call this curation. People would have valued these mauls because of the effort involved making them. If people were not carrying their mauls from one camp to another, then they would have carefully cached them for safety. Or there was some sort of agreement among families using the same camp, to leave the mauls after use. In a previous post (https://canehdianstories.com/wp-admin/post.php?post=2016&action=edit), on stone axes in Australia, I noted how highly prized they were among the Australian aborigines. Similar processes might have been operating here in the Americas with these mauls.

Indigenous people on the West Coast of Canada used more ground-stone technology to fashion stone tools than people on the prairies. The major reason may be related to access to more relatively softer (than quartzite) types of stone, such as basalt, for fashioning ground stone tools. I’m making my ground stone maul out of quartzite, the hardest and most common material available on the prairies. If I had a choice, knowing what I already know about this process, quartzite would not have been my first choice. Yet, most ground-stone mauls on the prairies are made from quartzite. The trade-off, however, is that a quartzite maul would not break as easily as mauls made of softer types of rocks.

These rather ornate hammerstones and grooved mauls are from the North West Coast of Canada. They are made mostly of basalt which is slightly easier to work than my quartzite cobble. However, even so, it would have taken a considerable amount of effort and ingenuity to fashion them. (Image from: Hilary Stewart, 1973. Artifacts of the Northwest Coast Indians. Hancock House Publishers.)

I just finished reading an article on how First Nations peoples in British Columbia, Canada, made nephrite adzes. Nephrite, on the Mohs hardness scale, is between 6 – 6.5. This material is slightly less hard than my wonder cobble, but still not that easy to carve. According to author, Hilary Stewart, people sawed nephrite boulders using a sandstone saw, with sand and water added for greater abrasion.

This series of sketches shows how archaeologists think nephrite boulders were cut into thin slabs which were then edged to make the highly prized nephrite adzes. As a sedimentary stone, sandstone has a hardness between 6 and 7. But the quartz fragments that it is composed of have a hardness of 7. So, as a saw this material would work well to cut/grind the hard quartzite. (Image from: Hilary Stewart, 1973. Artifacts of the Northwest Coast Indians. Hancock House Publishers.)

Maybe I’ll use a larger piece of sandstone next, and add a sand/water compound for more grit. And, a saw makes more sense since there is a greater surface area working to groove my cobble. With the flake burin I could only use a forward motion. Thus, a sawing tool having a greater edge area and back and forth motion should be much more efficient than a tiny tip of stone being pushed in only one direction. However, having said that, often what we think works best, doesn’t always materialize into reality. That’s why experimenting with these techniques is so important.

But, what kind of edge should the stone saw have to be most effective?

In this series of diagrams a piece of nephrite is cut using a sandstone saw. Note the upper three diagrams. Before use the saw blade edge is a V-shape. Then after grinding/cutting the nephrite, it becomes rounded from use, probably making it less effective to cut a thin groove, but still useful to form a wider groove in the rock, which is necessary for my grooved stone maul. Perhaps this is a natural, necessary progression. We start with a thin, deep groove when the sandstone edge is thin, then as it gets rounder it widens the groove. (Image from: Hilary Stewart, 1973. Artifacts of the Northwest Coast Indians. Hancock House Publishers.)

Stay tuned. I’ll check in again after reaching another sort of milestone with my project. However, I’m going to rethink what type of grinding tool to use and what it should be made out of. That’s what happens when, after four hours of hard work, you can barely see any progress. Suddenly creativity sets in.

Just Grinding And Pecking Away: A Closer Look At Ground Stone Tool Technology (Part One)

A grooved stone maul. A prehistoric object, found on many continents, made by grinding or pecking the groove to attach a handle. An incredibly labor-intensive activity taking many hours to complete.

In Alberta, stone mauls were used for thousands of years. One maul was found in an archaeological site dating over 10,000 years in Alberta (Fedyniak and Giering, 2016). Unfortunately very few mauls are found in an archaeological context, allowing accurate dating. There is currently no known change in their shape and/or size through time. And, these mauls mainly occur on the southern prairies and not further north.

In the mid-1970s, while out hunting in southern Saskatchewan, I picked up this grooved stone maul in a cultivated field near the edge of a slough. The maul is made from a coarse granitic stone. This one is about 11cm high and 10cm wide. It weighs 1.3kg (2.8lbs). The groove goes almost all the way around the maul, but gets shallower on one side. The groove is about 15mm wide and 5mm deep. One side of the maul has been damaged, either through use or when hit by a farm implement.

Considerable chunk missing on one side of the maul. There is a thin, deep cut line at one edge of the fracture. Possibly made by a cultivator blade rolling over the maul, breaking off a piece.
Close-up view showing the grove in the maul that is polished and smoothed and not as rough as the rest of the stone.

At the time my buddies gathered around to see what I’d found. I confidently stated it was a grooved maul. First Nations people made and used them for pounding things.

How could anyone know so much about a seemingly foreign-looking object by just picking it up and looking at it? Good question. There’s nothing really obvious about the maul to give us a clue what it was used for. Is there? Most people would have walked right by it without even noticing it was a tool.

One method to discover the function of an object is to closely examine it. I looked at both the distal and proximal polls. The proximal poll (smaller end) contained small surface indentations and pocking from use. The distal poll showed smoothed areas, possibly from grinding. It was also slightly flattened from use. Likely from pounding or grinding things. More sophisticated methods, such as microscopic use-wear analysis, would reveal even more about how these abrasions were made.

The base of the proximal poll of the grooved maul, showing indentations and pocking from pounding.
The base of the distal poll showing a combination of indentations but also smoothing on some grains, possibly from grinding something.

Another method we use to determine the function of an object are historic references and ethnographic sources. If an object was used in a certain manner historically, then it was also possibly used in the same way thousands of years ago. This is known as ethnographic analogy. It can be dangerous and it’s always best to use multiple lines of evidence before determining the function of an object.

In his journals explorer David Thompson mentioned First Nations women used stone hammers to smash up deadwood from the trees. According to early ethnographers, “The hammers were of two sorts: one quite heavy, almost like a sledge-hammer or maul, and with a short handle: the other much lighter, and with a longer, more limber handle. This last was used by men in war as a mace or war club, while the heavier hammer was used by women as an axe to break up fallen trees for firewood; as a hammer to drive tent-pins into the ground, to kill disabled animals, or to break up heavy bones for the marrow they contained.” (Grinnell, G. B. 1892. Blackfoot Lodge Tails; The Story of a Prairie People. Scribner, New York.)

This rare photograph of a Northwest Coast Kwakiutl warrior shows a rather larger, fearsome looking stone hand maul near his right arm. Northwest Coast First Nations peoples made a very sophisticated array of ground stone tools. The shapes and varieties of these mauls are considerably different than those used by people on the Canadian prairies. (From Hilary Stewart, 1973. Artifacts of the Northwest Coast Indians. Hancock House Publishers.)

There are other ways to determine the function of an object, which I discuss in later posts. However, first we have to talk about how these mauls were made. Based on ethnographic sources and examination of the stone hammer, the groove was made by patiently pecking, or grinding away at the stone with another preferably harder stone.

The question I often ask myself is why would anyone go through all the trouble to make a stone grooved maul to pound berries, meat and other things, when you can just pick up a suitable rock and use it to pound something, then discard it when you’re finished? You wouldn’t want to carry this object too far. My colleague, Robert Dawe, Royal Alberta Museum tells me that people used the mauls at campsites and left them there when they move. The mobile Kalahari bushmen did the same thing with their heavy metal axes.

There are a few possible reasons for carrying a maul with a hafted handle permanently: 1) warfare and defense; 2) it had sacred or symbolic meaning and was used in ceremonies; and, 3) it created more leverage and force. The American ethnographer George Bird Grinnell described an old Blackfoot man’s attempts to heal a sick child. He instructed two women to sit near the doorway of the tipi facing each other. “Each one held a puk-sah-tchis, [a maul] with which she was to beat in time to the singing” (Grinnell 1892:163) (In (Fedyniak and Giering, 2016).

A hafted grooved stone maul from rawhide and wood. A handle on this stone maul would create more leverage and force. The author of this post said it took about eight hours of pecking and grinding to form the groove on this fine-grained granite rock. From, ‘Sensible Survival’: https://sensiblesurvival.org/2012/04/28/make-a-hafted-stone-axe/

As I mentioned before, making ground stone tools is very labor-intensive. But, I have read few articles on just how much work it takes to make a stone maul. One researcher conducted an experiment to make a mortar from a basalt cobble. Below are some basic results of that research.

In this particular experiment, it took about two hours to peck a cavity about 8cm in diameter, 3cm deep into a basalt cobble. From, Andrea Squitieri and David Eitam, 2016. “An experimental approach to ground stone tool manufacture. Journal of Lithic Studies Vol. 3:553-564.
Pecking the mortar hole from a basalt cobble. From, Andrea Squitieri and David Eitam, 2016. “An experimental approach to ground stone tool manufacture. Journal of Lithic Studies Vol. 3:553-564.
Finishing the mortar by polishing it with water and basalt powder. Andrea Squitieri and David Eitam, 2016. “An experimental approach to ground stone tool manufacture. Journal of Lithic Studies Vol. 3:553-564.

I guess there’s only one way to find out how long it takes to make a grooved stone maul out of quartzite. And that is to make my own grooved stone maul. I’ve nothing but time on my hands during these Covid days. I mean, how hard can this be?

The Experiment

First I went down to my local river to find some suitable rock candidates to make a stone maul. What was I looking for? Having never made one, I wasn’t sure. I checked some of the mauls at the Royal Alberta Museum collections. They come in all shapes and sizes. And they are made from various types of rocks: granite, basalt, sandstone and quartzite. But, according to research at the Royal Alberta Museum, in Alberta, First Nations people used quartzite (67%) most often to make a stone maul (Fedyniak and Giering, 2016). The reasons? Quartzite was the hardest and most abundant rock available.

A sample of stone grooved mauls in the Royal Alberta Museum collections. This photograph is taken from an article by Kristine Fedyniak and Karen L. Giering, 2016. “More than meat: Residue analysis results of mauls in Alberta.” In: Back on the horse: Recent developments in archaeological and palaeontological research in Alberta. ARCHAEOLOGICAL SURVEY OF ALBERTA, OCCASIONAL PAPER No. 36.
Looking for suitable rocks to make a stone grooved maul along the south bank of the North Saskatchewan River, Edmonton, Alberta, Canada. These rocks along the shore have eroded out of a higher layer of Saskatchewan Sands and Gravels. Although these deposits contain a variety of types of rocks of different sizes, by far the most common is quartzite, a hard metamorphic rock. I looked at thousands of rocks before picking one or two particular specimens.

After searching for some time, the cobble I finally decided on felt the right weight to pound things and was almost round and symmetrically shaped. This cobble was about 12cm high and 11cm wide. Before pecking, it weighed 1.38kg (3.0lbs).

The unmodified quartzite cobble I chose to make my grooved stone maul.

I’ve read some literature about stone tool pecking and grinding. According to most sources the hammer used to peck out the groove should be a harder material than the stone maul material. This is somewhat problematic since quartzite is a 7 on the Mohs hardness scale. Even granite is slightly softer being only around 6.5-6.6 on the Mohs hardness scale. And basalt is only a 6. This then posed the first problem. If prehistoric peoples were pecking and fashioning grooved stone mauls out of quartzite, then what were they using to make them? None of the local rocks in the Edmonton area were harder than quartzite.

And were they just pecking, or incising and grinding the grooves? The smooth finish on the stone maul I found didn’t help answer that question. When I used a magnifying glass I could see the granite granules were crushed and smoothed. Examination of the groove under a low-power microscope might tell me even more.

I chose these two rocks to peck and groove the maul. The one on the left is a granite (1.6lbs or 0.73kgs) and the one on the right is probably a quartzite (0.44lbs or 0.2kgs) (hard to tell with the cortex still on the rock). Only experimentation and time will tell whether these two rocks will work. I’m not that optimistic though.

I have no idea how long this will take. It may take weeks, or perhaps months. I’ll record the amount of time I spend pecking away, whether I peck or grind and how my pecking stones hold up. I’ll keep you posted on my progress, problems, success. We’ll turn this post into experimental archaeology, since there are still relatively few studies on how to make ground stone tools. Especially grooved mauls found on the Canadian prairies.

That’s it for now. Time to get to work….

The Viking Ribstones, near Viking, Alberta, Canada. In a former post (https://canehdianstories.com/wp-admin/post.php?post=1776&action=edit) I mentioned these sacred rocks have lines and holes pecked or incised into the stone. The lines depict the ribs of the buffalo. The holes possibly to kill the buffalo. An example of ground stone technology on a massive scale. I marvel at the amount of work that went into making these objects.

Stone Piles on the Western Plains of Canada

This story is dedicated to the late John H. Brumley (1946 – 2020), an archaeologist, who categorized and researched the many stone medicine wheels on the Northern Great Plains. His efforts have enriched Canadian history.

The northern Great Plains of Canada contain many places where rocks seem to grow out of the ground. At least according to the local farmers who year after year painstakingly picked them off their fields only to find new ones in the spring. Rock piles along roadsides and fields are a common sight in Alberta, Canada. This view is from near the Rumsey medicine wheel with the Hand Hills on the far distant horizon.

When I was a little kid, I would walk with my dad and pick rocks off the fields in southwestern Saskatchewan. We would toss them onto the stone boat and then dump them on a large pile along the edge of the field. These rock piles are still a common sight when driving along the country roads on the western Canadian prairies.

But, other piles of rocks on the northern Great Plains of Canada, particularly in Alberta, are not the product of seemingly endless rock picking. These are referred to as ‘medicine wheels‘. Or, “atsot-akeeh” (from all sides) by the Blackfoot.

The term ‘medicine wheel’ originated from the Bighorn medicine wheel, located on top of Medicine Mountain, near Lovell, Wyoming. Today it refers to numerous stone alignments with a central hub, spokes and circles found on the Northern Great Plains of North America. Image from: https://www.atlasobscura.com/places/bighorn-medicine-wheel.
Various types and configurations of medicine wheels. A medicine wheel is made mostly from unmodified natural stone and must have a combination of at least two of the following primary components: 1) a prominent, central stone cairn of varying size; 2) one or more concentric stone rings, generally circular; and, 3) two or more stone lines radiating out from a central point of origin, central cairn or the margin of a stone ring. (This image and definition taken from “Medicine Wheels on the Northern Plains: A Summary and Appraisal.” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)

According to First Nations informants, these ancient stone features had religious and spiritual significance. They were often markers where prominent individuals died and occasionally were interred. Some informants claimed the spokes pointed to hunting or warpaths. Scholars think the spokes and ancillary cairns pointed to important times of the year, much like Stonehenge. Still others believe the functions of these alignments changed over the centuries.

By 1988 John Brumley had compiled a list of 67 medicine wheels in western Canada and the United States which he then categorized and described in the monograph cited below. Many more likely existed but were cleared off land intended for agriculture. Additional wheels may have been added to this list since 1988. Most medicine wheels occur in Canada, and primarily in Alberta. (Map from “Medicine Wheels on the Northern Plains: A Summary and Appraisal.” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)

Some medicine wheels may not have been single-event constructions. Instead, rocks were gradually added to the cairn and spokes for many years. The Suitor No. 2 medicine wheel in Alberta had eighteen spokes, some over thirty metres long, radiating out from a central ring.

EgOx-1, Suitor No. 2 medicine wheel, east-central Alberta, is of considerable proportions, containing additional stone circles and a possible effigy. (Image from “Medicine Wheels on the Northern Plains: A Summary and Appraisal,” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)

Others, such as the rather sizeable Bighorn medicine wheel in Wyoming and Majorville medicine wheel in southern Alberta, would have taken a long time to build and/or a considerable number of people to assemble them.

Perhaps one of the most complex and elaborate medicine wheels in North America, the Bighorn medicine wheel is still mainly intact. However, the middle cairn was vandalized and the area around the wheel is highly disturbed. Researchers believe the outside ancillary cairns had an astronomical function. (Image from “Medicine Wheels on the Northern Plains: A Summary and Appraisal,” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)
Lacking any ethnographic accounts, the Majorville medicine wheel (and others) was partially excavated to better understand its age and function. When excavating this wheel, archaeologist Jim Calder found that it was built over a period of 5,000 years. A few of the many artifacts recovered were for ceremonial and spiritual purposes including the presence of red ochre in the central cairn. (Image from “Medicine Wheels on the Northern Plains: A Summary and Appraisal,” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)

Keeping an Eye on My Children: Respect the Stone Piles

On my way to Empress, Alberta last week I stopped at the Rumsey medicine wheel. As a previous Parkland Archaeologist for the Government of Alberta, once responsible for archaeological sites in this area, I have visited Rumsey many times, occasionally alone or with Blackfoot elders and interested parties. This medicine wheel, like many others, sits at the highest point in the region. It is located close to the Red Deer River Valley.

The Rumsey medicine wheel, near Rumsey, Alberta, Canada. The cairn, like many others, has been vandalized. It did contain human remains.
A drawing of the Rumsey medicine wheel. Part of the outer ring of the cairn is missing, probably from vandalism, or was still being constructed. The two excavation pits are from looting and vandalism. (Image from “Medicine Wheels on the Northern Plains: A Summary and Appraisal,” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)
Prairie crocuses in full bloom near the Rumsey medicine wheel.
Nothing but blue sky and a great view. Like others, the Rumsey medicine wheel sits on the most prominent hill in the region, just east of the Red Deer River. From this point, you can see the surrounding countryside for many miles. These high places may have been chosen as vantage points and for spiritual reasons, but also practical ones. Imagine walking across the open prairies trying to find this particular spot. The Red Deer River acted as a linear reference point. Once you found it, you could then more easily find these high points along it.
The British Block medicine wheel on the Suffield Military Range near Medicine Hat, Alberta, has been badly messed with. People made their initials from the rocks, destroying parts of the original stone outer ring. If you look at about two o’clock just inside the outer circle, you will see a stone effigy or human figure. Artifacts found in the cairn suggest the medicine wheel dates back thousands of years. (Image from “Medicine Wheels on the Northern Plains: A Summary and Appraisal,” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)

Markers for Important Places, People, and Events

There are still several undisturbed stone tipi rings near the Rumsey medicine wheel. And perhaps many more were there before rocks were cleared off the land for agriculture. Many medicine wheels were important places where people came back repeatedly over the centuries for a variety of reasons.

At other places in Alberta, such as the forks of the Red Deer and South Saskatchewan Rivers, medicine wheels were part of a much larger First Nations land use history. This was an important place for people for centuries, leaving behind not only medicine wheels but stone effigies, countless stone tipi rings and extensive stone drive lanes for antelope and buffalo.

The bull’s forehead on the hills in the foreground, on the south bank of the South Saskatchewan River. A prominent hill at the confluence of the Red Deer and South Saskatchewan Rivers, near the Saskatchewan-Alberta border. This area of the northern Great Plains contains considerable evidence of an Indigenous presence going back thousands of years.
These two prominent hills (on the north side) occur near the confluence of the Red Deer and South Saskatchewan Rivers. The Roy Rivers medicine wheel sits on the highest hill on the left. From the highway, these hills are well over a mile away but the stone mounds are visible on the top. Most medicine wheels were recently named after places and people. They likely had First Nations names, now lost to us.
Close-up view of the Roy Rivers medicine wheel looking south. The larger main central cairn of rocks is on the highest point and a lesser stone cairn sits west of it. One of the chief factors, limiting where these stone features could be built, was the presence of rocks. There were plenty of those in this area just north of the ‘forks’ in Saskatchewan.
A view from the edge of the Red Deer Valley with the Roy Rivers medicine wheel in the distance on the horizon. There are ample rocks and boulders strewn on the prairie surface in this part of Saskatchewan.
The Roy Rivers medicine wheel is unusual with an aisle or doorway oriented towards the south. The wheel contains a stone effigy at approximately ten o’clock near the inside of the outer ring. Within the wheel are fifteen small stone cairns, possibly for astronomical purposes. (Image from “Medicine Wheels on the Northern Plains: A Summary and Appraisal,” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)

A Unique Piece of Canadian History

These rock alignments and features are important and unique pieces of Canadian history. Once disturbed or removed, they are forever lost to us. However, they are not always appreciated or respected by people who visit them. This is all too evident from the amount of disturbance to them.

I leave the last words, about the significance and meaning of these stone features, to a few Blackfoot informants, whose people were likely responsible for the construction of most of the medicine wheels in Alberta:

“I heard that when they buried a real chief, one that the people loved, they would pile rocks around the edge of his lodge and then place rows of rocks out from his burial tipi. The rock lines show that everybody went there to get something to eat. He is inviting someone every day. People went there to live off him.” (Adam White Man, South Peigan. From “Medicine Wheels on the Northern Plains: A Summary and Appraisal,” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)

“…the lines of rock show the different direction in which they go on the warpath – they were the dead chief’s war deeds. If they kill someone, they pile rocks at the end of the rock line. If there is no rock pile present, then they just go to the enemy. Short lines are short trips.” (Kim Weasel Tail. From “Medicine Wheels on the Northern Plains: A Summary and Appraisal,” by John H. Brumley, 1988. Archaeological Survey of Alberta, Manuscript Series No. 12)

……………………..