Just Grinding (No More Pecking) Away: Stone Maul Progress(?) Report (Three)

Many of you might be wondering, after reading my previous two posts about my stone maul project, why I haven’t written a follow-up post since last May. I have lots of excuses to avoid grooving that quartzite maul. Pain is high on the list. Skinning my fingers, breaking finger nails, arthritis and inflamed joints, and generally getting stone dust all over myself, immediately come to mind. And then of course there’s the reno from hell happening at my home.

Enough said. Perhaps it’s time for an update. I continued grinding away on my maul for about two more hours for the rest of May. I used a quartzite burin-like flake again because it worked better than anything I tried so far. However, I added wet sand to the groove for these two hours of work. I could feel the grinding flake catching and abrading the maul channel much better than before. Below is what the maul looked like after those two hours (now six hours in total).

My stone maul after about six hours of work. I was hoping maybe the inside of the maul was softer than the cortex (the outer oxidized surface of the rock). Not true say my knowers of stone. The inside is just as hard, as I’m finding out.

The groove is about 9cm long and 1.0cm – 2.0cm wide, and about 1mm – 2mm deep. The area on either side of the groove is becoming polished. Probably from my fingers continually rubbing against it.

I’m having a hard time keeping the groove straight. Once a straight groove line is established, it’s easy to keep this line when working near the middle. But at the end of the groove is where the battle to keep it straight is being waged. I’m worried that if I stray too much the groove on either end of the maul won’t join up when I reach the other side of the maul (if I ever get that far). So I penciled a line on the maul to help keep me on track.

I also noticed that no matter which direction I grind the groove, by occasionally reversing the maul in my hand (wrongly thinking the other end might be softer), one wall of the groove is ridging while the other shows more rounding or angling. I can’t currently explain why this is happening. If I was only pushing one way or not reversing the maul, then either the angle of the flake or the angle I am holding the flake and grooving might explain this difference.

Sketch of cross-section of the maul surface with the groove. One side is relatively straight. The other side is more angled/curved to the surface which is also a little lower than the other side of the groove. Occasionally I find myself holding the grinding flake at an angle, instead of straight up and down. But because I turn the maul often this angling should affect both walls of the groove the same?

A Little More Background on Making Ground Stone Tools

There are few historical or ethnographic descriptions of people making groundstone tools of any kind. Karen Giering, Royal Alberta Museum, sent me this interesting article, on ground stone axe manufacture by the Héta (meaning All of Us) Indians of Brazil, written by Vladimir Kozak in 1960 (published in 1972 in the Journal of the American Museum of Natural History). The Héta are now extinct and Kozak was almost too late to record this practice. The Héta had already replaced their stone axes with steel axes. His is one of the few articles written describing the manufacture of a stone axe in the Americas. Some of the processes involved apply to my ground stone maul.

Héta man and woman wearing the sipál neck adornment of their tribe. Photograph courtesy of: https://acateamazon.org/forgotten-tribes/forgotten-tribes-amazon-heta-brazil/

Kozak describes the stone axe: “The blade was nearly oval in cross section, and the bit was sharpened to a keen edge. The butt was buried deep within the thick upper part of the wooden handle, which was about two to three feet long. In the hands of one skilled in its use, the stone ax was, as I came to see, an effective tool.”

Although he had trouble convincing the Héta to make a stone axe for him (why do this when they already had steel axes), Kozak finally succeeded. Here are some highlights when Kozak observed the Héta men making an axe:

  • Careful selection of the stone for the axe head: “A stone should be of the proper size and have the approximate shape of the finished ax, that is, an elongated ovoid. By beginning with a stone of this shape, much less abrading is required, thus saving the ax maker many hours of work. Beside being the right size and shape, the stone must be tough enough to withstand the many blows it will have to deliver.” Unfortunately Kozak doesn’t mention what kind of stone the Héta men selected.
  • The hammerstone used for pecking the axe to shape it should be harder than the stone axe head. Nor does he mention the kind of stone selected for pecking.
  • Pecking and Shaping: “He spread his knees, brought the soles of his feet close together, and placed the ovoid stone between them. Then, taking the hammerstone in his hand, he began to peck. He pecked at the surface of the stone with light, carefully directed blows. No chips or flakes came off during the pecking, only fine granules. Little by little, the hard, water-polished cortex of the stone was completely removed, and the cobble was lightly pitted over its entire surface. Stone dust soon covered his hands and feet and accumulated on the mat beneath him.”
  • The pecking and shaping process took several days (number of hours are not mentioned). It was time-consuming, exhausting and required precision. One wrong whack could ruin the axe. As the author notes: “The work seemed endless to me, and I was beginning to see why Eirakan and the others had thought my request senseless.” I can sympathize.
  • Grinding and Polishing: Once pecking was completed, the men ground and polished the axe blade to sharpen it: “A large sandstone cobble was brought in for the purpose, along with some white clay, which Nango put into a water- filled container made from a folded palm spathe. He then took the ax head, dipped it into the container, held what was to be the cutting edge firmly against the sandstone with his hands, and began rubbing. He ground one side of the ax, turned it over, ground the other side, went back to the first side, and so on.” This step took an entire afternoon with Nango exerting considerable pressure on the grinding stone to sharpen the axe.
The axe blade is dipped in a wet clay solution and ground against a piece of sandstone held securely by the feet. The man uses both hands to apply downward pressure. The sandstone shapes the blade and the clay solution polishes it. Although Kozak doesn’t mention it, I’m assuming the polishing is meant to reduce the amount of friction when cutting. Also noteworthy, the grinding and pecking steps are not separate, but done together. Photograph courtesy of: https://acateamazon.org/forgotten-tribes/forgotten-tribes-amazon-heta-brazil/
  • Kozak states: “Under favorable conditions, the Héta could make a stone ax in three to five days, with another half-day for hafting.”
The completed stone axe, hafted and ready to perform multiple tasks. Photograph courtesy of: https://acateamazon.org/forgotten-tribes/forgotten-tribes-amazon-heta-brazil/
  • The Héta used stone axes for felling trees, cracking nuts, chipping and breaking bones, grinding and hammering. They sharpened the end of the handle to drive into rotten trees to extract insect larvae or to dig out honey: “Pounded into the ground with a heavy stone, it made holes for shelter poles. It functioned as a digging stick, and was used to excavate pit traps. And occasionally, when wielded as a club, the stone ax could be a dangerous weapon.” In short, the axe was an important multi-functional tool for the Héta.
The stone axe set in a wood handle with a sharpened end. The sharpened wood handle is used here to extract honey from a beehive. (Photograph courtesy of American Museum of Natural History, Vol. LXXXI, No.8, 1972)

Unlike the Australian Yir Yoront’s stone axes, there didn’t seem to be a ripple effect through the rest of Héta culture when they abandoned the stone axe in favor of the steel axe (for the Yir Yoront story go to this link: https://canehdianstories.com/wp-admin/post.php?post=2016&action=edit). But then Kozak wasn’t there to record all the details before and after the transition took place.

Controversy continues regarding the eventual adoption of metal tools by Indigenous Peoples around the world. Superior effectiveness and efficiency of metal versus stone tools top the list. Robert Carneiro has done a lot of work among Amazonian groups, including the Amahuaca Indians of Eastern Peru. He found it took seven-eight times longer to clear a patch for planting in the rain forest with a stone opposed to a steel axe. Others found there is only a slight difference in stone opposed to metal axe efficiency (a 1.4:1 ratio). I made a crude bifacially flaked stone hand axe to cut down a 10cm diameter tree. It took much longer than with a steel axe. Even if hafted with a more refined, thinner, sharper edge, the stone axe still would not have been as effective a cutting tool as a metal axe.

And then there’s the labour involved making stone axes or mauls. That too might have been a factor for choosing metal axes. I’m finding that out the hard way.

Back to the Grind

Recently I worked on my maul for another four hours. At first I tried to change grinding tactics. Instead of pushing a stone flake across the maul to cut the channel, I decided to take a page from the Héta. The Héta men used their feet to hold the sandstone abrader, essentially the reverse of what I was doing. They took the stone axe and ground it against the sandstone grinding stone. I held my maul between my knees and ground the flake against it. Why not reverse this process so I could apply more force when grinding.

I couldn’t use my feet to hold the grinding flake (besides being impractical, this position would have put me in bed for days), I put the stone grinding flake in a vice and then rubbed the stone maul against it; hopefully to create much more force and pressure. I’m quite certain there were no metal vices in Canadian prehistory, but there probably were vice-like devices for holding the abrader (flake or grinding stone) in place while rubbing the maul stone over it.

So, I tried it. It didn’t work. Well, at least not yet. Because my maul’s groove channel was so thin and shallow, I had trouble determining if I was in the groove while holding the maul upside down to grind it on the flake held by the vice. I tried a few times and finally gave up and went back to holding the flake to grind the maul held firmly between my knees. However, once the channel becomes deeper and wider, I’ll try this method again. This method should create a lot more downward grinding force and speed up the process. It can’t get much slower than it is now.

After Eight Hours of Work

Quartzite maul after eight hours of grinding.

After two more hours of grinding, and a total of eight hours of work, here are a few facts and things I learned.

  • I didn’t use sand in the groove as before. This likely would have gotten me tossed out of the house. It was too cold to work outside;
  • The length of the groove has not substantially changed (still about 9cm long);
  • The groove channel is now about 3mm wide;
  • The groove channel is about 1.5 – 2.0mm deep;
  • The edges of the grinding flake become smooth and highly polished after a certain amount of use. Once that happens the grinding flake is no longer effective. It just slides along the surface, not gripping it. At this point I either select a new flake or retouch the flake’s grinding edge by whacking it on the maul. Once retouched I can feel the flake grab in the maul groove again. Over a one hour session I retouched the flake 6 – 8 times;
  • Instead of using my feet to hold the maul in place while grinding it, I use both my knees and one hand to hold it firmly (holding it with my feet is out of the question). It’s hard to apply any force on it if it’s continually wobbling. Perhaps it would be more efficient to make some sort of vice-like mechanism to hold the maul more firmly while applying pressure on the flake with both hands;
  • I also used flakes with broader edges and angles to widen the groove channel. I’m using two different sizes of flakes to accomplish my objective: A larger flake to broaden the groove and a thin, narrow flake to deepen it. Eventually I want to create a 1cm – 1.5cm wide groove whose maximum depth is about 4mm – 5mm.
  • Shape and angularity of the grinding flake matters if you want to protect your fingers when applying a considerable grinding force. If there are sharp edge or pieces jutting out anywhere you grab the flake, it will eventually hurt you.

After Ten Hours of Work

Quartzite maul after ten hours of grinding.

After ten hours of work I feel slightly more encouraged, no longer thinking this project is totally hopeless. I seem to be working harder too as I can see actual progress being made. ‘Mind over matter’….If only that were true.

I’m also becoming a little possessive of the damned thing. As I labour away, I think about how devastating it would be if the maul broke or got lost. After all that work!

As I’m working, I also think back on the Australian Yir Yoront stone axes. The Yir Yoront traded for their stone axes and the men then controlled who used them. Was this control an act of exerting power and authority over others (as the author suggests)? Or was this possessiveness related to the axes value – the amount of labour (through trade) it took to acquire the axe, which was not easily replaced?

A few more facts after 10 hours of work:

  • The groove channel is 6mm wide in some places. My aim is to make it about 1.5cm wide;
  • In some places the groove channel is now 3mm deep;
  • I’m using a wider and larger flake edge which is beginning to grind away at the walls of the groove. The idea is to constantly increase the flake size as the groove gets deeper, to widen it.
Cross-section of cobble and grinding flake. The flake is wider than the bottom of the groove. When forced down the flake begins to abrade the sides of the groove, widening it.

I’ve also taken photographs of the flakes I used to grind the maul. I don’t see much edge retouch or any striations with the naked eye. But I do see the edges of the flake ground down and smoothed; and in some areas highly polished. There’s a whole raft of literature on stone tool microwear patterns made when using stone tools for cutting, grinding, pounding of different materials. Currently I’m unaware if anyone has ever identified wear patterns from making ground stone tools. If the methods I’m describing to make this maul are similar to those made prehistorically, then we should see similar types of evidence in the archaeological record.

So, I’ll just describe what I saw under a magnifying glass. On one grinding flake I used there’s a high degree of polish on the primary working surface – in this case the narrow tip of the flake. There is some polish along the sides of the flake as well, but not nearly as intense as on the tip. At this level of magnification I don’t see any other marks/striations on the flake working edge. I would need a low-power microscope to see those, if they exist.

The highly polished flake edge surface after grinding the maul groove in photographs A and B. A rejuvenation flake removed from the polished surface of the grinding flake in photograph C. The grinding flake is now ready for more work.

I also managed to find the rejuvenation flake I knocked off trying to retouch the edge on my grinding flake. This one is about 10mm by 7mm. The working edge of the rejuvenation flake (where it rubbed against the maul groove) is highly polished. It has some diagnostic flake attributes (striking platform, bulb of percussion, fissures, etc.). But, you would be hard-pressed to identify it as a flake with the naked eye.

The polished grinding edge of the rejuvenation flake removed by striking it on the maul. Even though it’s small, the flake shows most of the attributes of a typical percussion flake (a striking platform and a bulb of percussion). However, unlike other flakes it shows the highly polished grinding platform left over from grinding the maul groove. Unless you are looking closely, it would be easy to miss this type of evidence. In fact with most of our screening methods, this flake, or anything smaller, might not even make it back to the laboratory.

And, once again, to remind all of you who are unfamiliar with quartzite why my task is taking so long. Check out the image below. I tried knocking off some flakes from a frozen quartzite cobble with my hammer. Broke the hammer.

After attempting to smack off a few quartzite flakes from a cobblestone to use to grind my stone maul, and breaking my hammer, I had to take a much heavier stone quartzite hammerstone to eventually remove these flakes from the core. This cast-iron hammer didn’t have a chance. Quartzite is extremely hard. Right up there with steel. And harder than jade.

A Few Closing Thoughts

Below is a composite photograph showing my progress in grinding the maul for ten hours. I almost quit at hour four. It’s plain to see why.

As you can see, ten hours of grinding has produced a significant groove in the quartzite cobble (well, at least to my eyes). But I’m far from even finishing one side of the cobble. At this rate, it will take at least forty hours, or longer, of grinding to complete just one side.

In summary, there are only so many ways to speed up this process:

  1. Increase the downward force exerted when grinding the groove. I could accomplish this by putting either the grinding flake or the maul in a vice and using both hands to push down harder while grinding;
  2. Increase the grinding surface area of the flake. By using flakes that have a greater contact length with the grinding surface. This might work even better if I could also apply more force as well;
  3. Speed up the number of grinding repetitions per minute. Not practical. I’d have to pump some weights and be forty years younger to do that.

I’ll write my next maul progress report after I have completed twenty hours of work. As the maul groove gets wider, I may also have some new insights on the grinding process to share with you.