My Stone Maul. Just Grinding and Pecking Away: Progress(?) Report Number Two

I picked up this ground-stone granite maul on the Canadian prairies many years ago. I decided to try and make one like it. Hopefully by making one I would understand better the methods Indigenous peoples used, and also the amount of work involved.

In a previous post (https://canehdianstories.com/wp-admin/post.php?post=2853&action=edit) I discussed Indigenous ground-stone technology on the Canadian prairies. I decided that because we knew so little on how some objects, such as grooved stone mauls, were made I would try to make one. This method of inquiry is known as ‘Experimental Archaeology’ – a sub-field of archaeology intended to gain insight into prehistoric methods people used by replicating them. These are a few of my thoughts after a little over a week of working on this project. As usual, whenever I take on projects like this there are some real eye-openers. So far, I haven’t been disappointed.

I managed to get in about four hours of work on the quartzite cobble I chose to make my ground-stone maul. Below is a photograph showing my progress pecking and grinding the stone maul. Most of you, after looking closely at this photograph, will probably think: ‘What progress? I don’t see any.’

My quartzite cobble that I chose to make a ground-stone maul, after about four hours of work. As is quite evident, there are some scratches on the cortex (the outer oxidized layer of the cobble) and ever-so slight grooving.

Well, let me explain. Perhaps another photograph will help. If you look at the cobble closely, at just the right angle, with just the right light, you can see a slight indentation on the cortex (the outer oxidized layer on the rock). You can actually feel it better than see it.

A closer view of my attempt to start a groove on the maul after about four hours of work. In places I may have broken through the cortex. But barely. I’m also finding it hard to aim the stone grooving tool and keep it straight. It kind of wants to wander everywhere. Once I have established a groove, it should become easier to direct my aim.

In short, it’s going to take a little longer than the eight hours someone estimated it took to make a granite grooved maul. At this rate with the methods I’m using, you might add one or two zeros to the number eight. I’ll explain my methods, and the tools I’m using to make the maul, to give you a better understanding WHY it’s taking me so long to make any progress.

Pecking? Forget It

First I thought I would try to peck the groove using a small quartzite pebble having the same hardness as the maul. That didn’t work worth a damn. Not only was the impact area of the pecking stone too round, it wore down faster than the cobble I was pecking. And, after forty-five minutes of banging away I was getting nowhere, fast. At first the surface of the cobble looked good with all the stone flour on it. Then I realized that the flour was coming off my pecking stone and not the cobble.

This method was a waste of time. At least for me. It might work better to form basalt hand-mauls, but is difficult to make an initial groove in the quartzite cobble this way. Also, the hammerstone I used was too large with too blunt an end to be accurate. And, while there was a lot of stone flour on the quartzite cobble, it was mostly from the hammerstone.
The end of the hammerstone I used to peck on the quartzite cobble, after about forty-five minutes. It was getting me nowhere. Quite a bit of wear on the hammerstone though.

Sawing and Grinding

Next, I found a small coarse-grained sandstone flake. I used a sawing motion across about two centimetres of the flake edge to grind a groove on the cobble. This method worked much better than pecking. After one hour, I thought I saw some of the natural pockmarks on the cobble surface begin to smooth out. But, there was no point measuring my progress. I don’t think they make instruments capable of measuring that small a depth. I was averaging about 150 – 155 strokes per minute using this sawing technique. Or, with one hour’s work, 9,000 – 9,300 strokes. My fingers cramped pretty badly after only one hour’s work.

I started grinding the cobble with this orthoquartzite or hard sandstone flake. I used the entire thin edge length of the flake to grind away on the cobble surface. This method worked moderately well, but after about one hour, the flake no longer had an effective edge and will have to be replaced or resharpened.

Continued Search for Just the Right Tool

The coarse-grained sandstone flake worked well enough. But, was there something better? At this stage of the project I’m still guessing and experimenting with different methods. Next I fashioned a few more quartzite flakes. But this time I looked for flakes having burin-like tip (a type of handheld lithic flake with a chisel-like edge which prehistoric humans used for cutting wood or bone), or graver tips (lithic tool with a slightly more pointed tip than a burin), so that I could better gouge the surface of the maul.

This close-up view of a lithic burin tool used for cutting wood, bone and antler, also seems to work for grooving the quartzite cobble. From: https://www.quora.com/What-is-a-burin-used-for
In this photograph I’m using a burin-like quartzite flake tool and pushing it forward on the quartzite cobble. I’m slowly but surely removing microscopic bits of quartzite to form the groove for the maul. At first I just hand-held the flake. But after a while it was doing more damage to my fingers than to the cobble. So, I wrapped it in paper towel to prevent blisters (a real authentic touch). After about two hours of using this tool, the tip got dull. I retouched the edges of the flake to resharpen it. It should still work until at some point it becomes too small to effectively hold. I am also thinking of using a heavier, larger flake to apply more pressure on the edge. It might also be easier to hold.

If I held the flake at just the right angle (about 20 – 30 degrees) and pushed real hard, I felt I was scouring the cobble better than with the other two methods. However, if the flake point is held to low, not much scouring happened. If I held the flake too high, I couldn’t push it very well, or accurately. Blisters were starting to appear on my fingers, so I wrapped the flake in a paper towel. A piece of leather would do quite nicely as well. Occasionally I found my fore-finger scraping across the cobble as I pushed the flake.

Closeup of the tip of the quartzite flake, showing the wear from grinding on the stone maul. Also, the wear on my fingers holding the flake to grind the maul.

I’m working with rocks, which are good conductors of heat. I’m causing a lot of friction and heat when using the sawing methods. Perhaps dunking the flake tool in water, or adding water to maul surface, would prevent heat build-up.

A Few Closing Observations

It’s pretty obvious already that this project is going to take a long, long time to make. Unless I figure out a better method of incising my cobble. So far, both the sandstone saw and graving/gouging with considerable force on the flake work the best.

Patience is a key here. We live in a society of instant results and gratification. This project would be something you worked on all winter when there was less other work to do. Like knitting sweaters or large rugs, which took many hours to fashion. I also find that grinding away is a lot like distance running. Eventually, through repeated strokes which take little thinking, it puts your mind in a different place, relaxing it. We could all use a bit more of that in our present-day society.

Given the amount of work that I expect to put into making this tool (if I ever do), I would highly value it. In archaeology we call this curation. People would have valued these mauls because of the effort involved making them. If people were not carrying their mauls from one camp to another, then they would have carefully cached them for safety. Or there was some sort of agreement among families using the same camp, to leave the mauls after use. In a previous post (https://canehdianstories.com/wp-admin/post.php?post=2016&action=edit), on stone axes in Australia, I noted how highly prized they were among the Australian aborigines. Similar processes might have been operating here in the Americas with these mauls.

Indigenous people on the West Coast of Canada used more ground-stone technology to fashion stone tools than people on the prairies. The major reason may be related to access to more relatively softer (than quartzite) types of stone, such as basalt, for fashioning ground stone tools. I’m making my ground stone maul out of quartzite, the hardest and most common material available on the prairies. If I had a choice, knowing what I already know about this process, quartzite would not have been my first choice. Yet, most ground-stone mauls on the prairies are made from quartzite. The trade-off, however, is that a quartzite maul would not break as easily as mauls made of softer types of rocks.

These rather ornate hammerstones and grooved mauls are from the North West Coast of Canada. They are made mostly of basalt which is slightly easier to work than my quartzite cobble. However, even so, it would have taken a considerable amount of effort and ingenuity to fashion them. (Image from: Hilary Stewart, 1973. Artifacts of the Northwest Coast Indians. Hancock House Publishers.)

I just finished reading an article on how First Nations peoples in British Columbia, Canada, made nephrite adzes. Nephrite, on the Mohs hardness scale, is between 6 – 6.5. This material is slightly less hard than my wonder cobble, but still not that easy to carve. According to author, Hilary Stewart, people sawed nephrite boulders using a sandstone saw, with sand and water added for greater abrasion.

This series of sketches shows how archaeologists think nephrite boulders were cut into thin slabs which were then edged to make the highly prized nephrite adzes. As a sedimentary stone, sandstone has a hardness between 6 and 7. But the quartz fragments that it is composed of have a hardness of 7. So, as a saw this material would work well to cut/grind the hard quartzite. (Image from: Hilary Stewart, 1973. Artifacts of the Northwest Coast Indians. Hancock House Publishers.)

Maybe I’ll use a larger piece of sandstone next, and add a sand/water compound for more grit. And, a saw makes more sense since there is a greater surface area working to groove my cobble. With the flake burin I could only use a forward motion. Thus, a sawing tool having a greater edge area and back and forth motion should be much more efficient than a tiny tip of stone being pushed in only one direction. However, having said that, often what we think works best, doesn’t always materialize into reality. That’s why experimenting with these techniques is so important.

But, what kind of edge should the stone saw have to be most effective?

In this series of diagrams a piece of nephrite is cut using a sandstone saw. Note the upper three diagrams. Before use the saw blade edge is a V-shape. Then after grinding/cutting the nephrite, it becomes rounded from use, probably making it less effective to cut a thin groove, but still useful to form a wider groove in the rock, which is necessary for my grooved stone maul. Perhaps this is a natural, necessary progression. We start with a thin, deep groove when the sandstone edge is thin, then as it gets rounder it widens the groove. (Image from: Hilary Stewart, 1973. Artifacts of the Northwest Coast Indians. Hancock House Publishers.)

Stay tuned. I’ll check in again after reaching another sort of milestone with my project. However, I’m going to rethink what type of grinding tool to use and what it should be made out of. That’s what happens when, after four hours of hard work, you can barely see any progress. Suddenly creativity sets in.

Just Grinding And Pecking Away: A Closer Look At Ground Stone Tool Technology (Part One)

A grooved stone maul. A prehistoric object, found on many continents, made by grinding or pecking the groove to attach a handle. An incredibly labor-intensive activity taking many hours to complete.

In Alberta, stone mauls were used for thousands of years. One maul was found in an archaeological site dating over 10,000 years in Alberta (Fedyniak and Giering, 2016). Unfortunately very few mauls are found in an archaeological context, allowing accurate dating. There is currently no known change in their shape and/or size through time. And, these mauls mainly occur on the southern prairies and not further north.

In the mid-1970s, while out hunting in southern Saskatchewan, I picked up this grooved stone maul in a cultivated field near the edge of a slough. The maul is made from a coarse granitic stone. This one is about 11cm high and 10cm wide. It weighs 1.3kg (2.8lbs). The groove goes almost all the way around the maul, but gets shallower on one side. The groove is about 15mm wide and 5mm deep. One side of the maul has been damaged, either through use or when hit by a farm implement.

Considerable chunk missing on one side of the maul. There is a thin, deep cut line at one edge of the fracture. Possibly made by a cultivator blade rolling over the maul, breaking off a piece.
Close-up view showing the grove in the maul that is polished and smoothed and not as rough as the rest of the stone.

At the time my buddies gathered around to see what I’d found. I confidently stated it was a grooved maul. First Nations people made and used them for pounding things.

How could anyone know so much about a seemingly foreign-looking object by just picking it up and looking at it? Good question. There’s nothing really obvious about the maul to give us a clue what it was used for. Is there? Most people would have walked right by it without even noticing it was a tool.

One method to discover the function of an object is to closely examine it. I looked at both the distal and proximal polls. The proximal poll (smaller end) contained small surface indentations and pocking from use. The distal poll showed smoothed areas, possibly from grinding. It was also slightly flattened from use. Likely from pounding or grinding things. More sophisticated methods, such as microscopic use-wear analysis, would reveal even more about how these abrasions were made.

The base of the proximal poll of the grooved maul, showing indentations and pocking from pounding.
The base of the distal poll showing a combination of indentations but also smoothing on some grains, possibly from grinding something.

Another method we use to determine the function of an object are historic references and ethnographic sources. If an object was used in a certain manner historically, then it was also possibly used in the same way thousands of years ago. This is known as ethnographic analogy. It can be dangerous and it’s always best to use multiple lines of evidence before determining the function of an object.

In his journals explorer David Thompson mentioned First Nations women used stone hammers to smash up deadwood from the trees. According to early ethnographers, “The hammers were of two sorts: one quite heavy, almost like a sledge-hammer or maul, and with a short handle: the other much lighter, and with a longer, more limber handle. This last was used by men in war as a mace or war club, while the heavier hammer was used by women as an axe to break up fallen trees for firewood; as a hammer to drive tent-pins into the ground, to kill disabled animals, or to break up heavy bones for the marrow they contained.” (Grinnell, G. B. 1892. Blackfoot Lodge Tails; The Story of a Prairie People. Scribner, New York.)

This rare photograph of a Northwest Coast Kwakiutl warrior shows a rather larger, fearsome looking stone hand maul near his right arm. Northwest Coast First Nations peoples made a very sophisticated array of ground stone tools. The shapes and varieties of these mauls are considerably different than those used by people on the Canadian prairies. (From Hilary Stewart, 1973. Artifacts of the Northwest Coast Indians. Hancock House Publishers.)

There are other ways to determine the function of an object, which I discuss in later posts. However, first we have to talk about how these mauls were made. Based on ethnographic sources and examination of the stone hammer, the groove was made by patiently pecking, or grinding away at the stone with another preferably harder stone.

The question I often ask myself is why would anyone go through all the trouble to make a stone grooved maul to pound berries, meat and other things, when you can just pick up a suitable rock and use it to pound something, then discard it when you’re finished? You wouldn’t want to carry this object too far. My colleague, Robert Dawe, Royal Alberta Museum tells me that people used the mauls at campsites and left them there when they move. The mobile Kalahari bushmen did the same thing with their heavy metal axes.

There are a few possible reasons for carrying a maul with a hafted handle permanently: 1) warfare and defense; 2) it had sacred or symbolic meaning and was used in ceremonies; and, 3) it created more leverage and force. The American ethnographer George Bird Grinnell described an old Blackfoot man’s attempts to heal a sick child. He instructed two women to sit near the doorway of the tipi facing each other. “Each one held a puk-sah-tchis, [a maul] with which she was to beat in time to the singing” (Grinnell 1892:163) (In (Fedyniak and Giering, 2016).

A hafted grooved stone maul from rawhide and wood. A handle on this stone maul would create more leverage and force. The author of this post said it took about eight hours of pecking and grinding to form the groove on this fine-grained granite rock. From, ‘Sensible Survival’: https://sensiblesurvival.org/2012/04/28/make-a-hafted-stone-axe/

As I mentioned before, making ground stone tools is very labor-intensive. But, I have read few articles on just how much work it takes to make a stone maul. One researcher conducted an experiment to make a mortar from a basalt cobble. Below are some basic results of that research.

In this particular experiment, it took about two hours to peck a cavity about 8cm in diameter, 3cm deep into a basalt cobble. From, Andrea Squitieri and David Eitam, 2016. “An experimental approach to ground stone tool manufacture. Journal of Lithic Studies Vol. 3:553-564.
Pecking the mortar hole from a basalt cobble. From, Andrea Squitieri and David Eitam, 2016. “An experimental approach to ground stone tool manufacture. Journal of Lithic Studies Vol. 3:553-564.
Finishing the mortar by polishing it with water and basalt powder. Andrea Squitieri and David Eitam, 2016. “An experimental approach to ground stone tool manufacture. Journal of Lithic Studies Vol. 3:553-564.

I guess there’s only one way to find out how long it takes to make a grooved stone maul out of quartzite. And that is to make my own grooved stone maul. I’ve nothing but time on my hands during these Covid days. I mean, how hard can this be?

The Experiment

First I went down to my local river to find some suitable rock candidates to make a stone maul. What was I looking for? Having never made one, I wasn’t sure. I checked some of the mauls at the Royal Alberta Museum collections. They come in all shapes and sizes. And they are made from various types of rocks: granite, basalt, sandstone and quartzite. But, according to research at the Royal Alberta Museum, in Alberta, First Nations people used quartzite (67%) most often to make a stone maul (Fedyniak and Giering, 2016). The reasons? Quartzite was the hardest and most abundant rock available.

A sample of stone grooved mauls in the Royal Alberta Museum collections. This photograph is taken from an article by Kristine Fedyniak and Karen L. Giering, 2016. “More than meat: Residue analysis results of mauls in Alberta.” In: Back on the horse: Recent developments in archaeological and palaeontological research in Alberta. ARCHAEOLOGICAL SURVEY OF ALBERTA, OCCASIONAL PAPER No. 36.
Looking for suitable rocks to make a stone grooved maul along the south bank of the North Saskatchewan River, Edmonton, Alberta, Canada. These rocks along the shore have eroded out of a higher layer of Saskatchewan Sands and Gravels. Although these deposits contain a variety of types of rocks of different sizes, by far the most common is quartzite, a hard metamorphic rock. I looked at thousands of rocks before picking one or two particular specimens.

After searching for some time, the cobble I finally decided on felt the right weight to pound things and was almost round and symmetrically shaped. This cobble was about 12cm high and 11cm wide. Before pecking, it weighed 1.38kg (3.0lbs).

The unmodified quartzite cobble I chose to make my grooved stone maul.

I’ve read some literature about stone tool pecking and grinding. According to most sources the hammer used to peck out the groove should be a harder material than the stone maul material. This is somewhat problematic since quartzite is a 7 on the Mohs hardness scale. Even granite is slightly softer being only around 6.5-6.6 on the Mohs hardness scale. And basalt is only a 6. This then posed the first problem. If prehistoric peoples were pecking and fashioning grooved stone mauls out of quartzite, then what were they using to make them? None of the local rocks in the Edmonton area were harder than quartzite.

And were they just pecking, or incising and grinding the grooves? The smooth finish on the stone maul I found didn’t help answer that question. When I used a magnifying glass I could see the granite granules were crushed and smoothed. Examination of the groove under a low-power microscope might tell me even more.

I chose these two rocks to peck and groove the maul. The one on the left is a granite (1.6lbs or 0.73kgs) and the one on the right is probably a quartzite (0.44lbs or 0.2kgs) (hard to tell with the cortex still on the rock). Only experimentation and time will tell whether these two rocks will work. I’m not that optimistic though.

I have no idea how long this will take. It may take weeks, or perhaps months. I’ll record the amount of time I spend pecking away, whether I peck or grind and how my pecking stones hold up. I’ll keep you posted on my progress, problems, success. We’ll turn this post into experimental archaeology, since there are still relatively few studies on how to make ground stone tools. Especially grooved mauls found on the Canadian prairies.

That’s it for now. Time to get to work….

The Viking Ribstones, near Viking, Alberta, Canada. In a former post (https://canehdianstories.com/wp-admin/post.php?post=1776&action=edit) I mentioned these sacred rocks have lines and holes pecked or incised into the stone. The lines depict the ribs of the buffalo. The holes possibly to kill the buffalo. An example of ground stone technology on a massive scale. I marvel at the amount of work that went into making these objects.